Calculus Examples

Find the Inverse f(x)=2sin(x)-1
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
Add to both sides of the equation.
Step 3.3
Divide each term in by and simplify.
Tap for more steps...
Step 3.3.1
Divide each term in by .
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor.
Step 3.3.2.1.2
Divide by .
Step 3.4
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 4
Replace with to show the final answer.
Step 5
Verify if is the inverse of .
Tap for more steps...
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Tap for more steps...
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Combine the numerators over the common denominator.
Step 5.2.4
Combine the opposite terms in .
Tap for more steps...
Step 5.2.4.1
Add and .
Step 5.2.4.2
Add and .
Step 5.2.5
Cancel the common factor of .
Tap for more steps...
Step 5.2.5.1
Cancel the common factor.
Step 5.2.5.2
Divide by .
Step 5.3
Evaluate .
Tap for more steps...
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1
The functions sine and arcsine are inverses.
Step 5.3.3.2
Apply the distributive property.
Step 5.3.3.3
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.3.1
Cancel the common factor.
Step 5.3.3.3.2
Rewrite the expression.
Step 5.3.3.4
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.4.1
Cancel the common factor.
Step 5.3.3.4.2
Rewrite the expression.
Step 5.3.4
Combine the opposite terms in .
Tap for more steps...
Step 5.3.4.1
Subtract from .
Step 5.3.4.2
Add and .
Step 5.4
Since and , then is the inverse of .