Enter a problem...
Calculus Examples
y=3x-2y=3x−2 , [4,7][4,7]
Step 1
Write y=3x-2y=3x−2 as a function.
f(x)=3x-2f(x)=3x−2
Step 2
Step 2.1
Set the denominator in 3x-23x−2 equal to 00 to find where the expression is undefined.
x-2=0x−2=0
Step 2.2
Add 22 to both sides of the equation.
x=2x=2
Step 2.3
The domain is all values of xx that make the expression defined.
Interval Notation:
(-∞,2)∪(2,∞)(−∞,2)∪(2,∞)
Set-Builder Notation:
{x|x≠2}{x|x≠2}
Interval Notation:
(-∞,2)∪(2,∞)(−∞,2)∪(2,∞)
Set-Builder Notation:
{x|x≠2}{x|x≠2}
Step 3
f(x)f(x) is continuous on [4,7][4,7].
f(x)f(x) is continuous
Step 4
The average value of function ff over the interval [a,b][a,b] is defined as A(x)=1b-a∫baf(x)dxA(x)=1b−a∫baf(x)dx.
A(x)=1b-a∫baf(x)dxA(x)=1b−a∫baf(x)dx
Step 5
Substitute the actual values into the formula for the average value of a function.
A(x)=17-4(∫743x-2dx)A(x)=17−4(∫743x−2dx)
Step 6
Since 33 is constant with respect to xx, move 33 out of the integral.
A(x)=17-4(3∫741x-2dx)A(x)=17−4(3∫741x−2dx)
Step 7
Step 7.1
Let u=x-2u=x−2. Find dudxdudx.
Step 7.1.1
Differentiate x-2x−2.
ddx[x-2]ddx[x−2]
Step 7.1.2
By the Sum Rule, the derivative of x-2x−2 with respect to xx is ddx[x]+ddx[-2]ddx[x]+ddx[−2].
ddx[x]+ddx[-2]ddx[x]+ddx[−2]
Step 7.1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
1+ddx[-2]1+ddx[−2]
Step 7.1.4
Since -2−2 is constant with respect to xx, the derivative of -2−2 with respect to xx is 00.
1+01+0
Step 7.1.5
Add 11 and 00.
11
11
Step 7.2
Substitute the lower limit in for xx in u=x-2u=x−2.
ulower=4-2ulower=4−2
Step 7.3
Subtract 22 from 44.
ulower=2ulower=2
Step 7.4
Substitute the upper limit in for xx in u=x-2u=x−2.
uupper=7-2uupper=7−2
Step 7.5
Subtract 22 from 77.
uupper=5uupper=5
Step 7.6
The values found for ulowerulower and uupperuupper will be used to evaluate the definite integral.
ulower=2ulower=2
uupper=5uupper=5
Step 7.7
Rewrite the problem using uu, dudu, and the new limits of integration.
A(x)=17-4(3∫521udu)A(x)=17−4(3∫521udu)
A(x)=17-4(3∫521udu)A(x)=17−4(3∫521udu)
Step 8
The integral of 1u1u with respect to uu is ln(|u|)ln(|u|).
A(x)=17-4(3(ln(|u|)]52))A(x)=17−4(3(ln(|u|)]52))
Step 9
Evaluate ln(|u|)ln(|u|) at 55 and at 22.
A(x)=17-4(3(ln(|5|)-ln(|2|)))A(x)=17−4(3(ln(|5|)−ln(|2|)))
Step 10
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)−logb(y)=logb(xy).
A(x)=17-4(3ln(|5||2|))A(x)=17−4(3ln(|5||2|))
Step 11
Step 11.1
The absolute value is the distance between a number and zero. The distance between 00 and 55 is 55.
A(x)=17-4(3ln(5|2|))A(x)=17−4(3ln(5|2|))
Step 11.2
The absolute value is the distance between a number and zero. The distance between 00 and 22 is 22.
A(x)=17-4(3ln(52))A(x)=17−4(3ln(52))
A(x)=17-4(3ln(52))A(x)=17−4(3ln(52))
Step 12
Subtract 44 from 77.
A(x)=13⋅(3ln(52))A(x)=13⋅(3ln(52))
Step 13
Step 13.1
Factor 33 out of 3ln(52)3ln(52).
A(x)=13⋅(3(ln(52)))A(x)=13⋅(3(ln(52)))
Step 13.2
Cancel the common factor.
A(x)=13⋅(3ln(52))
Step 13.3
Rewrite the expression.
A(x)=ln(52)
A(x)=ln(52)
Step 14