Calculus Examples

Check if Differentiable Over an Interval y=3/(x-2) , [4,7]
,
Step 1
Find the derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Differentiate using the Constant Multiple Rule.
Tap for more steps...
Step 1.1.1.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2
Rewrite as .
Step 1.1.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.1.2.1
To apply the Chain Rule, set as .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Replace all occurrences of with .
Step 1.1.3
Differentiate.
Tap for more steps...
Step 1.1.3.1
Multiply by .
Step 1.1.3.2
By the Sum Rule, the derivative of with respect to is .
Step 1.1.3.3
Differentiate using the Power Rule which states that is where .
Step 1.1.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.5
Simplify the expression.
Tap for more steps...
Step 1.1.3.5.1
Add and .
Step 1.1.3.5.2
Multiply by .
Step 1.1.4
Simplify.
Tap for more steps...
Step 1.1.4.1
Rewrite the expression using the negative exponent rule .
Step 1.1.4.2
Combine terms.
Tap for more steps...
Step 1.1.4.2.1
Combine and .
Step 1.1.4.2.2
Move the negative in front of the fraction.
Step 1.2
The first derivative of with respect to is .
Step 2
Find if the derivative is continuous on .
Tap for more steps...
Step 2.1
To find whether the function is continuous on or not, find the domain of .
Tap for more steps...
Step 2.1.1
Set the denominator in equal to to find where the expression is undefined.
Step 2.1.2
Solve for .
Tap for more steps...
Step 2.1.2.1
Set the equal to .
Step 2.1.2.2
Add to both sides of the equation.
Step 2.1.3
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation:
Interval Notation:
Set-Builder Notation:
Step 2.2
is continuous on .
The function is continuous.
The function is continuous.
Step 3
The function is differentiable on because the derivative is continuous on .
The function is differentiable.
Step 4