Calculus Examples

Use the Limit Definition to Find the Derivative 2x^2+3xy+4y^2-5x+2y
2x2+3xy+4y2-5x+2y2x2+3xy+4y25x+2y
Step 1
Consider the limit definition of the derivative.
f(x)=limh0f(x+h)-f(x)h
Step 2
Find the components of the definition.
Tap for more steps...
Step 2.1
Evaluate the function at x=x+h.
Tap for more steps...
Step 2.1.1
Replace the variable x with x+h in the expression.
f(x+h)=2(x+h)2+3(x+h)y+4y2-5(x+h)+2y
Step 2.1.2
Simplify the result.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Rewrite (x+h)2 as (x+h)(x+h).
f(x+h)=2((x+h)(x+h))+3(x+h)y+4y2-5(x+h)+2y
Step 2.1.2.1.2
Expand (x+h)(x+h) using the FOIL Method.
Tap for more steps...
Step 2.1.2.1.2.1
Apply the distributive property.
f(x+h)=2(x(x+h)+h(x+h))+3(x+h)y+4y2-5(x+h)+2y
Step 2.1.2.1.2.2
Apply the distributive property.
f(x+h)=2(xx+xh+h(x+h))+3(x+h)y+4y2-5(x+h)+2y
Step 2.1.2.1.2.3
Apply the distributive property.
f(x+h)=2(xx+xh+hx+hh)+3(x+h)y+4y2-5(x+h)+2y
f(x+h)=2(xx+xh+hx+hh)+3(x+h)y+4y2-5(x+h)+2y
Step 2.1.2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.1.2.1.3.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.3.1.1
Multiply x by x.
f(x+h)=2(x2+xh+hx+hh)+3(x+h)y+4y2-5(x+h)+2y
Step 2.1.2.1.3.1.2
Multiply h by h.
f(x+h)=2(x2+xh+hx+h2)+3(x+h)y+4y2-5(x+h)+2y
f(x+h)=2(x2+xh+hx+h2)+3(x+h)y+4y2-5(x+h)+2y
Step 2.1.2.1.3.2
Add xh and hx.
Tap for more steps...
Step 2.1.2.1.3.2.1
Reorder x and h.
f(x+h)=2(x2+hx+hx+h2)+3(x+h)y+4y2-5(x+h)+2y
Step 2.1.2.1.3.2.2
Add hx and hx.
f(x+h)=2(x2+2hx+h2)+3(x+h)y+4y2-5(x+h)+2y
f(x+h)=2(x2+2hx+h2)+3(x+h)y+4y2-5(x+h)+2y
f(x+h)=2(x2+2hx+h2)+3(x+h)y+4y2-5(x+h)+2y
Step 2.1.2.1.4
Apply the distributive property.
f(x+h)=2x2+2(2hx)+2h2+3(x+h)y+4y2-5(x+h)+2y
Step 2.1.2.1.5
Multiply 2 by 2.
f(x+h)=2x2+4(hx)+2h2+3(x+h)y+4y2-5(x+h)+2y
Step 2.1.2.1.6
Apply the distributive property.
f(x+h)=2x2+4hx+2h2+(3x+3h)y+4y2-5(x+h)+2y
Step 2.1.2.1.7
Apply the distributive property.
f(x+h)=2x2+4hx+2h2+3xy+3hy+4y2-5(x+h)+2y
Step 2.1.2.1.8
Apply the distributive property.
f(x+h)=2x2+4hx+2h2+3xy+3hy+4y2-5x-5h+2y
f(x+h)=2x2+4hx+2h2+3xy+3hy+4y2-5x-5h+2y
Step 2.1.2.2
The final answer is 2x2+4hx+2h2+3xy+3hy+4y2-5x-5h+2y.
2x2+4hx+2h2+3xy+3hy+4y2-5x-5h+2y
2x2+4hx+2h2+3xy+3hy+4y2-5x-5h+2y
2x2+4hx+2h2+3xy+3hy+4y2-5x-5h+2y
Step 2.2
Reorder.
Tap for more steps...
Step 2.2.1
Move -5x.
2x2+4hx+2h2+3xy+3hy+4y2-5h-5x+2y
Step 2.2.2
Move 3xy.
2x2+4hx+2h2+3hy+3xy+4y2-5h-5x+2y
Step 2.2.3
Move 2x2.
4hx+2h2+3hy+2x2+3xy+4y2-5h-5x+2y
Step 2.2.4
Reorder 4hx and 2h2.
2h2+4hx+3hy+2x2+3xy+4y2-5h-5x+2y
2h2+4hx+3hy+2x2+3xy+4y2-5h-5x+2y
Step 2.3
Find the components of the definition.
f(x+h)=2h2+4hx+3hy+2x2+3xy+4y2-5h-5x+2y
f(x)=2x2+3xy+4y2-5x+2y
f(x+h)=2h2+4hx+3hy+2x2+3xy+4y2-5h-5x+2y
f(x)=2x2+3xy+4y2-5x+2y
Step 3
Plug in the components.
f(x)=limh02h2+4hx+3hy+2x2+3xy+4y2-5h-5x+2y-(2x2+3xy+4y2-5x+2y)h
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Apply the distributive property.
f(x)=limh02h2+4hx+3hy+2x2+3xy+4y2-5h-5x+2y-(2x2)-(3xy)-(4y2)-(-5x)-(2y)h
Step 4.1.2
Simplify.
Tap for more steps...
Step 4.1.2.1
Multiply 2 by -1.
f(x)=limh02h2+4hx+3hy+2x2+3xy+4y2-5h-5x+2y-2x2-(3xy)-(4y2)-(-5x)-(2y)h
Step 4.1.2.2
Multiply 3 by -1.
f(x)=limh02h2+4hx+3hy+2x2+3xy+4y2-5h-5x+2y-2x2-3(xy)-(4y2)-(-5x)-(2y)h
Step 4.1.2.3
Multiply 4 by -1.
f(x)=limh02h2+4hx+3hy+2x2+3xy+4y2-5h-5x+2y-2x2-3(xy)-4y2-(-5x)-(2y)h
Step 4.1.2.4
Multiply -5 by -1.
f(x)=limh02h2+4hx+3hy+2x2+3xy+4y2-5h-5x+2y-2x2-3(xy)-4y2+5x-(2y)h
Step 4.1.2.5
Multiply 2 by -1.
f(x)=limh02h2+4hx+3hy+2x2+3xy+4y2-5h-5x+2y-2x2-3(xy)-4y2+5x-2yh
f(x)=limh02h2+4hx+3hy+2x2+3xy+4y2-5h-5x+2y-2x2-3(xy)-4y2+5x-2yh
Step 4.1.3
Subtract 2x2 from 2x2.
f(x)=limh02h2+4hx+3hy+3xy+4y2-5h-5x+2y+0-3xy-4y2+5x-2yh
Step 4.1.4
Add 2h2 and 0.
f(x)=limh02h2+4hx+3hy+3xy+4y2-5h-5x+2y-3xy-4y2+5x-2yh
Step 4.1.5
Subtract 3xy from 3xy.
f(x)=limh02h2+4hx+3hy+4y2-5h-5x+2y+0-4y2+5x-2yh
Step 4.1.6
Add 2h2 and 0.
f(x)=limh02h2+4hx+3hy+4y2-5h-5x+2y-4y2+5x-2yh
Step 4.1.7
Subtract 4y2 from 4y2.
f(x)=limh02h2+4hx+3hy-5h-5x+2y+0+5x-2yh
Step 4.1.8
Add 2h2 and 0.
f(x)=limh02h2+4hx+3hy-5h-5x+2y+5x-2yh
Step 4.1.9
Add -5x and 5x.
f(x)=limh02h2+4hx+3hy-5h+2y+0-2yh
Step 4.1.10
Add 2h2 and 0.
f(x)=limh02h2+4hx+3hy-5h+2y-2yh
Step 4.1.11
Subtract 2y from 2y.
f(x)=limh02h2+4hx+3hy-5h+0h
Step 4.1.12
Add 2h2+4hx+3hy-5h and 0.
f(x)=limh02h2+4hx+3hy-5hh
Step 4.1.13
Factor h out of 2h2+4hx+3hy-5h.
Tap for more steps...
Step 4.1.13.1
Factor h out of 2h2.
f(x)=limh0h(2h)+4hx+3hy-5hh
Step 4.1.13.2
Factor h out of 4hx.
f(x)=limh0h(2h)+h(4x)+3hy-5hh
Step 4.1.13.3
Factor h out of 3hy.
f(x)=limh0h(2h)+h(4x)+h(3y)-5hh
Step 4.1.13.4
Factor h out of -5h.
f(x)=limh0h(2h)+h(4x)+h(3y)+h-5h
Step 4.1.13.5
Factor h out of h(2h)+h(4x).
f(x)=limh0h(2h+4x)+h(3y)+h-5h
Step 4.1.13.6
Factor h out of h(2h+4x)+h(3y).
f(x)=limh0h(2h+4x+3y)+h-5h
Step 4.1.13.7
Factor h out of h(2h+4x+3y)+h-5.
f(x)=limh0h(2h+4x+3y-5)h
f(x)=limh0h(2h+4x+3y-5)h
f(x)=limh0h(2h+4x+3y-5)h
Step 4.2
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 4.2.1
Cancel the common factor of h.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
f(x)=limh0h(2h+4x+3y-5)h
Step 4.2.1.2
Divide 2h+4x+3y-5 by 1.
f(x)=limh02h+4x+3y-5
f(x)=limh02h+4x+3y-5
Step 4.2.2
Move 2h.
f(x)=limh04x+3y+2h-5
f(x)=limh04x+3y+2h-5
f(x)=limh04x+3y+2h-5
Step 5
Evaluate the limit.
Tap for more steps...
Step 5.1
Split the limit using the Sum of Limits Rule on the limit as h approaches 0.
limh04x+limh03y+limh02h-limh05
Step 5.2
Evaluate the limit of 4x which is constant as h approaches 0.
4x+limh03y+limh02h-limh05
Step 5.3
Evaluate the limit of 3y which is constant as h approaches 0.
4x+3y+limh02h-limh05
Step 5.4
Move the term 2 outside of the limit because it is constant with respect to h.
4x+3y+2limh0h-limh05
Step 5.5
Evaluate the limit of 5 which is constant as h approaches 0.
4x+3y+2limh0h-15
4x+3y+2limh0h-15
Step 6
Evaluate the limit of h by plugging in 0 for h.
4x+3y+20-15
Step 7
Simplify the answer.
Tap for more steps...
Step 7.1
Simplify each term.
Tap for more steps...
Step 7.1.1
Multiply 2 by 0.
4x+3y+0-15
Step 7.1.2
Multiply -1 by 5.
4x+3y+0-5
4x+3y+0-5
Step 7.2
Add 4x+3y and 0.
4x+3y-5
4x+3y-5
Step 8
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]