Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
Step 2.1
Find the second derivative.
Step 2.1.1
Find the first derivative.
Step 2.1.1.1
Differentiate using the Quotient Rule which states that is where and .
Step 2.1.1.2
Differentiate.
Step 2.1.1.2.1
Differentiate using the Power Rule which states that is where .
Step 2.1.1.2.2
Multiply by .
Step 2.1.1.2.3
By the Sum Rule, the derivative of with respect to is .
Step 2.1.1.2.4
Differentiate using the Power Rule which states that is where .
Step 2.1.1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.1.2.6
Simplify the expression.
Step 2.1.1.2.6.1
Add and .
Step 2.1.1.2.6.2
Multiply by .
Step 2.1.1.3
Raise to the power of .
Step 2.1.1.4
Raise to the power of .
Step 2.1.1.5
Use the power rule to combine exponents.
Step 2.1.1.6
Add and .
Step 2.1.1.7
Subtract from .
Step 2.1.1.8
Simplify.
Step 2.1.1.8.1
Factor out of .
Step 2.1.1.8.2
Rewrite as .
Step 2.1.1.8.3
Factor out of .
Step 2.1.1.8.4
Rewrite as .
Step 2.1.1.8.5
Move the negative in front of the fraction.
Step 2.1.2
Find the second derivative.
Step 2.1.2.1
Differentiate using the Product Rule which states that is where and .
Step 2.1.2.2
Differentiate using the Quotient Rule which states that is where and .
Step 2.1.2.3
Differentiate.
Step 2.1.2.3.1
Multiply the exponents in .
Step 2.1.2.3.1.1
Apply the power rule and multiply exponents, .
Step 2.1.2.3.1.2
Multiply by .
Step 2.1.2.3.2
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2.3.3
Differentiate using the Power Rule which states that is where .
Step 2.1.2.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.3.5
Simplify the expression.
Step 2.1.2.3.5.1
Add and .
Step 2.1.2.3.5.2
Move to the left of .
Step 2.1.2.4
Differentiate using the chain rule, which states that is where and .
Step 2.1.2.4.1
To apply the Chain Rule, set as .
Step 2.1.2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.1.2.4.3
Replace all occurrences of with .
Step 2.1.2.5
Differentiate.
Step 2.1.2.5.1
Multiply by .
Step 2.1.2.5.2
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2.5.3
Differentiate using the Power Rule which states that is where .
Step 2.1.2.5.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.5.5
Simplify the expression.
Step 2.1.2.5.5.1
Add and .
Step 2.1.2.5.5.2
Move to the left of .
Step 2.1.2.5.5.3
Multiply by .
Step 2.1.2.5.6
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.5.7
Simplify the expression.
Step 2.1.2.5.7.1
Multiply by .
Step 2.1.2.5.7.2
Add and .
Step 2.1.2.6
Simplify.
Step 2.1.2.6.1
Apply the distributive property.
Step 2.1.2.6.2
Apply the distributive property.
Step 2.1.2.6.3
Simplify the numerator.
Step 2.1.2.6.3.1
Simplify each term.
Step 2.1.2.6.3.1.1
Rewrite as .
Step 2.1.2.6.3.1.2
Expand using the FOIL Method.
Step 2.1.2.6.3.1.2.1
Apply the distributive property.
Step 2.1.2.6.3.1.2.2
Apply the distributive property.
Step 2.1.2.6.3.1.2.3
Apply the distributive property.
Step 2.1.2.6.3.1.3
Simplify and combine like terms.
Step 2.1.2.6.3.1.3.1
Simplify each term.
Step 2.1.2.6.3.1.3.1.1
Multiply by by adding the exponents.
Step 2.1.2.6.3.1.3.1.1.1
Use the power rule to combine exponents.
Step 2.1.2.6.3.1.3.1.1.2
Add and .
Step 2.1.2.6.3.1.3.1.2
Move to the left of .
Step 2.1.2.6.3.1.3.1.3
Multiply by .
Step 2.1.2.6.3.1.3.2
Add and .
Step 2.1.2.6.3.1.4
Apply the distributive property.
Step 2.1.2.6.3.1.5
Simplify.
Step 2.1.2.6.3.1.5.1
Multiply by .
Step 2.1.2.6.3.1.5.2
Multiply by .
Step 2.1.2.6.3.1.6
Apply the distributive property.
Step 2.1.2.6.3.1.7
Simplify.
Step 2.1.2.6.3.1.7.1
Multiply by by adding the exponents.
Step 2.1.2.6.3.1.7.1.1
Move .
Step 2.1.2.6.3.1.7.1.2
Multiply by .
Step 2.1.2.6.3.1.7.1.2.1
Raise to the power of .
Step 2.1.2.6.3.1.7.1.2.2
Use the power rule to combine exponents.
Step 2.1.2.6.3.1.7.1.3
Add and .
Step 2.1.2.6.3.1.7.2
Multiply by by adding the exponents.
Step 2.1.2.6.3.1.7.2.1
Move .
Step 2.1.2.6.3.1.7.2.2
Multiply by .
Step 2.1.2.6.3.1.7.2.2.1
Raise to the power of .
Step 2.1.2.6.3.1.7.2.2.2
Use the power rule to combine exponents.
Step 2.1.2.6.3.1.7.2.3
Add and .
Step 2.1.2.6.3.1.8
Multiply by .
Step 2.1.2.6.3.1.9
Multiply by by adding the exponents.
Step 2.1.2.6.3.1.9.1
Multiply by .
Step 2.1.2.6.3.1.9.1.1
Raise to the power of .
Step 2.1.2.6.3.1.9.1.2
Use the power rule to combine exponents.
Step 2.1.2.6.3.1.9.2
Add and .
Step 2.1.2.6.3.1.10
Expand using the FOIL Method.
Step 2.1.2.6.3.1.10.1
Apply the distributive property.
Step 2.1.2.6.3.1.10.2
Apply the distributive property.
Step 2.1.2.6.3.1.10.3
Apply the distributive property.
Step 2.1.2.6.3.1.11
Simplify and combine like terms.
Step 2.1.2.6.3.1.11.1
Simplify each term.
Step 2.1.2.6.3.1.11.1.1
Multiply by by adding the exponents.
Step 2.1.2.6.3.1.11.1.1.1
Move .
Step 2.1.2.6.3.1.11.1.1.2
Use the power rule to combine exponents.
Step 2.1.2.6.3.1.11.1.1.3
Add and .
Step 2.1.2.6.3.1.11.1.2
Rewrite using the commutative property of multiplication.
Step 2.1.2.6.3.1.11.1.3
Multiply by by adding the exponents.
Step 2.1.2.6.3.1.11.1.3.1
Move .
Step 2.1.2.6.3.1.11.1.3.2
Multiply by .
Step 2.1.2.6.3.1.11.1.3.2.1
Raise to the power of .
Step 2.1.2.6.3.1.11.1.3.2.2
Use the power rule to combine exponents.
Step 2.1.2.6.3.1.11.1.3.3
Add and .
Step 2.1.2.6.3.1.11.1.4
Multiply by .
Step 2.1.2.6.3.1.11.1.5
Multiply by .
Step 2.1.2.6.3.1.11.2
Add and .
Step 2.1.2.6.3.1.11.3
Add and .
Step 2.1.2.6.3.2
Subtract from .
Step 2.1.2.6.3.3
Add and .
Step 2.1.2.6.4
Simplify the numerator.
Step 2.1.2.6.4.1
Factor out of .
Step 2.1.2.6.4.1.1
Factor out of .
Step 2.1.2.6.4.1.2
Factor out of .
Step 2.1.2.6.4.1.3
Factor out of .
Step 2.1.2.6.4.1.4
Factor out of .
Step 2.1.2.6.4.1.5
Factor out of .
Step 2.1.2.6.4.2
Rewrite as .
Step 2.1.2.6.4.3
Let . Substitute for all occurrences of .
Step 2.1.2.6.4.4
Factor by grouping.
Step 2.1.2.6.4.4.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 2.1.2.6.4.4.1.1
Factor out of .
Step 2.1.2.6.4.4.1.2
Rewrite as plus
Step 2.1.2.6.4.4.1.3
Apply the distributive property.
Step 2.1.2.6.4.4.2
Factor out the greatest common factor from each group.
Step 2.1.2.6.4.4.2.1
Group the first two terms and the last two terms.
Step 2.1.2.6.4.4.2.2
Factor out the greatest common factor (GCF) from each group.
Step 2.1.2.6.4.4.3
Factor the polynomial by factoring out the greatest common factor, .
Step 2.1.2.6.4.5
Replace all occurrences of with .
Step 2.1.2.6.4.6
Rewrite as .
Step 2.1.2.6.4.7
Factor.
Step 2.1.2.6.5
Cancel the common factor of and .
Step 2.1.2.6.5.1
Factor out of .
Step 2.1.2.6.5.2
Rewrite as .
Step 2.1.2.6.5.3
Factor out of .
Step 2.1.2.6.5.4
Rewrite as .
Step 2.1.2.6.5.5
Factor out of .
Step 2.1.2.6.5.6
Cancel the common factors.
Step 2.1.2.6.5.6.1
Factor out of .
Step 2.1.2.6.5.6.2
Cancel the common factor.
Step 2.1.2.6.5.6.3
Rewrite the expression.
Step 2.1.2.6.6
Multiply by .
Step 2.1.2.6.7
Move the negative in front of the fraction.
Step 2.1.2.6.8
Multiply .
Step 2.1.2.6.8.1
Multiply by .
Step 2.1.2.6.8.2
Multiply by .
Step 2.1.3
The second derivative of with respect to is .
Step 2.2
Set the second derivative equal to then solve the equation .
Step 2.2.1
Set the second derivative equal to .
Step 2.2.2
Set the numerator equal to zero.
Step 2.2.3
Solve the equation for .
Step 2.2.3.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.2.3.2
Set equal to .
Step 2.2.3.3
Set equal to and solve for .
Step 2.2.3.3.1
Set equal to .
Step 2.2.3.3.2
Subtract from both sides of the equation.
Step 2.2.3.4
Set equal to and solve for .
Step 2.2.3.4.1
Set equal to .
Step 2.2.3.4.2
Add to both sides of the equation.
Step 2.2.3.5
The final solution is all the values that make true.
Step 3
Step 3.1
Set the denominator in equal to to find where the expression is undefined.
Step 3.2
Solve for .
Step 3.2.1
Subtract from both sides of the equation.
Step 3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.2.3
Simplify .
Step 3.2.3.1
Rewrite as .
Step 3.2.3.2
Rewrite as .
Step 3.2.3.3
Rewrite as .
Step 3.2.3.4
Rewrite as .
Step 3.2.3.4.1
Factor out of .
Step 3.2.3.4.2
Rewrite as .
Step 3.2.3.5
Pull terms out from under the radical.
Step 3.2.3.6
Move to the left of .
Step 3.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.2.4.1
First, use the positive value of the to find the first solution.
Step 3.2.4.2
Next, use the negative value of the to find the second solution.
Step 3.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.3
The domain is all real numbers.
Interval Notation:
Set-Builder Notation:
Interval Notation:
Set-Builder Notation:
Step 4
Create intervals around the -values where the second derivative is zero or undefined.
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
Multiply by .
Step 5.2.2
Simplify the denominator.
Step 5.2.2.1
Raise to the power of .
Step 5.2.2.2
Add and .
Step 5.2.2.3
Raise to the power of .
Step 5.2.3
Simplify the numerator.
Step 5.2.3.1
Add and .
Step 5.2.3.2
Multiply by .
Step 5.2.3.3
Subtract from .
Step 5.2.4
Reduce the expression by cancelling the common factors.
Step 5.2.4.1
Multiply by .
Step 5.2.4.2
Cancel the common factor of and .
Step 5.2.4.2.1
Factor out of .
Step 5.2.4.2.2
Cancel the common factors.
Step 5.2.4.2.2.1
Factor out of .
Step 5.2.4.2.2.2
Cancel the common factor.
Step 5.2.4.2.2.3
Rewrite the expression.
Step 5.2.4.3
Move the negative in front of the fraction.
Step 5.2.5
The final answer is .
Step 5.3
The graph is concave down on the interval because is negative.
Concave down on since is negative
Concave down on since is negative
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Multiply by .
Step 6.2.2
Simplify the denominator.
Step 6.2.2.1
Raise to the power of .
Step 6.2.2.2
Add and .
Step 6.2.2.3
Raise to the power of .
Step 6.2.3
Simplify the numerator.
Step 6.2.3.1
Add and .
Step 6.2.3.2
Multiply by .
Step 6.2.3.3
Subtract from .
Step 6.2.4
Multiply by .
Step 6.2.5
The final answer is .
Step 6.3
The graph is concave up on the interval because is positive.
Concave up on since is positive
Concave up on since is positive
Step 7
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Step 7.2.1
Multiply by .
Step 7.2.2
Simplify the denominator.
Step 7.2.2.1
Raise to the power of .
Step 7.2.2.2
Add and .
Step 7.2.2.3
Raise to the power of .
Step 7.2.3
Simplify the numerator.
Step 7.2.3.1
Add and .
Step 7.2.3.2
Multiply by .
Step 7.2.3.3
Subtract from .
Step 7.2.4
Simplify the expression.
Step 7.2.4.1
Multiply by .
Step 7.2.4.2
Move the negative in front of the fraction.
Step 7.2.5
The final answer is .
Step 7.3
The graph is concave down on the interval because is negative.
Concave down on since is negative
Concave down on since is negative
Step 8
Step 8.1
Replace the variable with in the expression.
Step 8.2
Simplify the result.
Step 8.2.1
Multiply by .
Step 8.2.2
Simplify the denominator.
Step 8.2.2.1
Raise to the power of .
Step 8.2.2.2
Add and .
Step 8.2.2.3
Raise to the power of .
Step 8.2.3
Simplify the numerator.
Step 8.2.3.1
Add and .
Step 8.2.3.2
Multiply by .
Step 8.2.3.3
Subtract from .
Step 8.2.4
Reduce the expression by cancelling the common factors.
Step 8.2.4.1
Multiply by .
Step 8.2.4.2
Cancel the common factor of and .
Step 8.2.4.2.1
Factor out of .
Step 8.2.4.2.2
Cancel the common factors.
Step 8.2.4.2.2.1
Factor out of .
Step 8.2.4.2.2.2
Cancel the common factor.
Step 8.2.4.2.2.3
Rewrite the expression.
Step 8.2.5
The final answer is .
Step 8.3
The graph is concave up on the interval because is positive.
Concave up on since is positive
Concave up on since is positive
Step 9
The graph is concave down when the second derivative is negative and concave up when the second derivative is positive.
Concave down on since is negative
Concave up on since is positive
Concave down on since is negative
Concave up on since is positive
Step 10