Calculus Examples

Find the Concavity 3x^4-4x^3-6x^2+12x+1
Step 1
Write as a function.
Step 2
Find the values where the second derivative is equal to .
Tap for more steps...
Step 2.1
Find the second derivative.
Tap for more steps...
Step 2.1.1
Find the first derivative.
Tap for more steps...
Step 2.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.1.2
Evaluate .
Tap for more steps...
Step 2.1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 2.1.1.2.3
Multiply by .
Step 2.1.1.3
Evaluate .
Tap for more steps...
Step 2.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 2.1.1.3.3
Multiply by .
Step 2.1.1.4
Evaluate .
Tap for more steps...
Step 2.1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.1.4.2
Differentiate using the Power Rule which states that is where .
Step 2.1.1.4.3
Multiply by .
Step 2.1.1.5
Evaluate .
Tap for more steps...
Step 2.1.1.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.1.5.2
Differentiate using the Power Rule which states that is where .
Step 2.1.1.5.3
Multiply by .
Step 2.1.1.6
Differentiate using the Constant Rule.
Tap for more steps...
Step 2.1.1.6.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.1.6.2
Add and .
Step 2.1.2
Find the second derivative.
Tap for more steps...
Step 2.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2.2
Evaluate .
Tap for more steps...
Step 2.1.2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.1.2.2.3
Multiply by .
Step 2.1.2.3
Evaluate .
Tap for more steps...
Step 2.1.2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.1.2.3.3
Multiply by .
Step 2.1.2.4
Evaluate .
Tap for more steps...
Step 2.1.2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.1.2.4.3
Multiply by .
Step 2.1.2.5
Differentiate using the Constant Rule.
Tap for more steps...
Step 2.1.2.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.5.2
Add and .
Step 2.1.3
The second derivative of with respect to is .
Step 2.2
Set the second derivative equal to then solve the equation .
Tap for more steps...
Step 2.2.1
Set the second derivative equal to .
Step 2.2.2
Factor the left side of the equation.
Tap for more steps...
Step 2.2.2.1
Factor out of .
Tap for more steps...
Step 2.2.2.1.1
Factor out of .
Step 2.2.2.1.2
Factor out of .
Step 2.2.2.1.3
Factor out of .
Step 2.2.2.1.4
Factor out of .
Step 2.2.2.1.5
Factor out of .
Step 2.2.2.2
Factor.
Tap for more steps...
Step 2.2.2.2.1
Factor by grouping.
Tap for more steps...
Step 2.2.2.2.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 2.2.2.2.1.1.1
Factor out of .
Step 2.2.2.2.1.1.2
Rewrite as plus
Step 2.2.2.2.1.1.3
Apply the distributive property.
Step 2.2.2.2.1.1.4
Multiply by .
Step 2.2.2.2.1.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 2.2.2.2.1.2.1
Group the first two terms and the last two terms.
Step 2.2.2.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 2.2.2.2.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 2.2.2.2.2
Remove unnecessary parentheses.
Step 2.2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.2.4
Set equal to and solve for .
Tap for more steps...
Step 2.2.4.1
Set equal to .
Step 2.2.4.2
Solve for .
Tap for more steps...
Step 2.2.4.2.1
Subtract from both sides of the equation.
Step 2.2.4.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.2.4.2.2.1
Divide each term in by .
Step 2.2.4.2.2.2
Simplify the left side.
Tap for more steps...
Step 2.2.4.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.4.2.2.2.1.1
Cancel the common factor.
Step 2.2.4.2.2.2.1.2
Divide by .
Step 2.2.4.2.2.3
Simplify the right side.
Tap for more steps...
Step 2.2.4.2.2.3.1
Move the negative in front of the fraction.
Step 2.2.5
Set equal to and solve for .
Tap for more steps...
Step 2.2.5.1
Set equal to .
Step 2.2.5.2
Add to both sides of the equation.
Step 2.2.6
The final solution is all the values that make true.
Step 3
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
Set-Builder Notation:
Step 4
Create intervals around the -values where the second derivative is zero or undefined.
Step 5
Substitute any number from the interval into the second derivative and evaluate to determine the concavity.
Tap for more steps...
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Raise to the power of .
Step 5.2.1.2
Multiply by .
Step 5.2.1.3
Multiply by .
Step 5.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 5.2.2.1
Add and .
Step 5.2.2.2
Subtract from .
Step 5.2.3
The final answer is .
Step 5.3
The graph is concave up on the interval because is positive.
Concave up on since is positive
Concave up on since is positive
Step 6
Substitute any number from the interval into the second derivative and evaluate to determine the concavity.
Tap for more steps...
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1
Raising to any positive power yields .
Step 6.2.1.2
Multiply by .
Step 6.2.1.3
Multiply by .
Step 6.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 6.2.2.1
Add and .
Step 6.2.2.2
Subtract from .
Step 6.2.3
The final answer is .
Step 6.3
The graph is concave down on the interval because is negative.
Concave down on since is negative
Concave down on since is negative
Step 7
Substitute any number from the interval into the second derivative and evaluate to determine the concavity.
Tap for more steps...
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Tap for more steps...
Step 7.2.1
Simplify each term.
Tap for more steps...
Step 7.2.1.1
Raise to the power of .
Step 7.2.1.2
Multiply by .
Step 7.2.1.3
Multiply by .
Step 7.2.2
Simplify by subtracting numbers.
Tap for more steps...
Step 7.2.2.1
Subtract from .
Step 7.2.2.2
Subtract from .
Step 7.2.3
The final answer is .
Step 7.3
The graph is concave up on the interval because is positive.
Concave up on since is positive
Concave up on since is positive
Step 8
The graph is concave down when the second derivative is negative and concave up when the second derivative is positive.
Concave up on since is positive
Concave down on since is negative
Concave up on since is positive
Step 9