Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
Step 2.1
Find the second derivative.
Step 2.1.1
Find the first derivative.
Step 2.1.1.1
Differentiate.
Step 2.1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.1.1.2
Differentiate using the Power Rule which states that is where .
Step 2.1.1.2
Evaluate .
Step 2.1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.1.2.2
The derivative of with respect to is .
Step 2.1.2
Find the second derivative.
Step 2.1.2.1
Differentiate.
Step 2.1.2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.2
Evaluate .
Step 2.1.2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.2.2
The derivative of with respect to is .
Step 2.1.2.2.3
Multiply by .
Step 2.1.2.2.4
Multiply by .
Step 2.1.2.3
Add and .
Step 2.1.3
The second derivative of with respect to is .
Step 2.2
Set the second derivative equal to then solve the equation .
Step 2.2.1
Set the second derivative equal to .
Step 2.2.2
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
The exact value of is .
Step 2.2.4
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 2.2.5
Subtract from .
Step 2.2.6
Find the period of .
Step 2.2.6.1
The period of the function can be calculated using .
Step 2.2.6.2
Replace with in the formula for period.
Step 2.2.6.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 2.2.6.4
Divide by .
Step 2.2.7
The period of the function is so values will repeat every radians in both directions.
, for any integer
Step 2.2.8
Consolidate the answers.
, for any integer
, for any integer
, for any integer
Step 3
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
Set-Builder Notation:
Step 4
Create intervals around the -values where the second derivative is zero or undefined.
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
The exact value of is .
Step 5.2.2
The final answer is .
Step 5.3
The graph is concave up on the interval because is positive.
Concave up on since is positive
Concave up on since is positive
Step 6