Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Step 1.1.2.1
Differentiate using the chain rule, which states that is where and .
Step 1.1.2.1.1
To apply the Chain Rule, set as .
Step 1.1.2.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.1.3
Replace all occurrences of with .
Step 1.1.2.2
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.3
Differentiate using the Power Rule which states that is where .
Step 1.1.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.5
Add and .
Step 1.1.2.6
Multiply by .
Step 1.1.3
Evaluate .
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Differentiate using the Constant Rule.
Step 1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4.2
Add and .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Simplify .
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Use the Binomial Theorem.
Step 2.2.1.2
Simplify each term.
Step 2.2.1.2.1
Multiply by .
Step 2.2.1.2.2
Raise to the power of .
Step 2.2.1.2.3
Multiply by .
Step 2.2.1.2.4
Raise to the power of .
Step 2.2.1.2.5
Multiply by .
Step 2.2.1.2.6
Raise to the power of .
Step 2.2.1.2.7
Multiply by .
Step 2.2.1.2.8
Raise to the power of .
Step 2.2.1.2.9
Multiply by .
Step 2.2.1.2.10
Raise to the power of .
Step 2.2.1.3
Apply the distributive property.
Step 2.2.1.4
Simplify.
Step 2.2.1.4.1
Multiply by .
Step 2.2.1.4.2
Multiply by .
Step 2.2.1.4.3
Multiply by .
Step 2.2.1.4.4
Multiply by .
Step 2.2.1.4.5
Multiply by .
Step 2.2.1.4.6
Multiply by .
Step 2.2.2
Subtract from .
Step 2.3
Graph each side of the equation. The solution is the x-value of the point of intersection.
Step 3
The values which make the derivative equal to are .
Step 4
Split into separate intervals around the values that make the derivative or undefined.
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Add and .
Step 5.2.1.2
Raise to the power of .
Step 5.2.1.3
Multiply by .
Step 5.2.2
Subtract from .
Step 5.2.3
The final answer is .
Step 5.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
Add and .
Step 6.2.1.2
Raising to any positive power yields .
Step 6.2.1.3
Multiply by .
Step 6.2.2
Subtract from .
Step 6.2.3
The final answer is .
Step 6.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 7
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Step 7.2.1
Simplify each term.
Step 7.2.1.1
Add and .
Step 7.2.1.2
Raise to the power of .
Step 7.2.1.3
Multiply by .
Step 7.2.2
Subtract from .
Step 7.2.3
The final answer is .
Step 7.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 8
List the intervals on which the function is increasing and decreasing.
Increasing on:
Decreasing on:
Step 9