Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4
Add and .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Since , there are no solutions.
No solution
No solution
Step 3
There are no values of in the domain of the original problem where the derivative is or undefined.
No critical points found
Step 4
No points make the derivative equal to or undefined. The interval to check if is increasing or decreasing is .
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
The final answer is .
Step 6
The result of substituting into is , which is positive, so the graph is increasing on the interval .
Increasing on since
Step 7
Increasing over the interval means that the function is always increasing.
Always Increasing
Step 8