Enter a problem...
Calculus Examples
x15(x+6)
Step 1
Write x15(x+6) as a function.
f(x)=x15(x+6)
Step 2
Step 2.1
Find the first derivative.
Step 2.1.1
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x15 and g(x)=x+6.
x15ddx[x+6]+(x+6)ddx[x15]
Step 2.1.2
Differentiate.
Step 2.1.2.1
By the Sum Rule, the derivative of x+6 with respect to x is ddx[x]+ddx[6].
x15(ddx[x]+ddx[6])+(x+6)ddx[x15]
Step 2.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
x15(1+ddx[6])+(x+6)ddx[x15]
Step 2.1.2.3
Since 6 is constant with respect to x, the derivative of 6 with respect to x is 0.
x15(1+0)+(x+6)ddx[x15]
Step 2.1.2.4
Simplify the expression.
Step 2.1.2.4.1
Add 1 and 0.
x15⋅1+(x+6)ddx[x15]
Step 2.1.2.4.2
Multiply x15 by 1.
x15+(x+6)ddx[x15]
x15+(x+6)ddx[x15]
Step 2.1.2.5
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=15.
x15+(x+6)(15x15-1)
x15+(x+6)(15x15-1)
Step 2.1.3
To write -1 as a fraction with a common denominator, multiply by 55.
x15+(x+6)(15x15-1⋅55)
Step 2.1.4
Combine -1 and 55.
x15+(x+6)(15x15+-1⋅55)
Step 2.1.5
Combine the numerators over the common denominator.
x15+(x+6)(15x1-1⋅55)
Step 2.1.6
Simplify the numerator.
Step 2.1.6.1
Multiply -1 by 5.
x15+(x+6)(15x1-55)
Step 2.1.6.2
Subtract 5 from 1.
x15+(x+6)(15x-45)
x15+(x+6)(15x-45)
Step 2.1.7
Move the negative in front of the fraction.
x15+(x+6)(15x-45)
Step 2.1.8
Combine 15 and x-45.
x15+(x+6)x-455
Step 2.1.9
Move x-45 to the denominator using the negative exponent rule b-n=1bn.
x15+(x+6)15x45
Step 2.1.10
Simplify.
Step 2.1.10.1
Apply the distributive property.
x15+x15x45+615x45
Step 2.1.10.2
Combine terms.
Step 2.1.10.2.1
Combine x and 15x45.
x15+x5x45+615x45
Step 2.1.10.2.2
Move x45 to the numerator using the negative exponent rule 1bn=b-n.
x15+x⋅x-455+615x45
Step 2.1.10.2.3
Multiply x by x-45 by adding the exponents.
Step 2.1.10.2.3.1
Multiply x by x-45.
Step 2.1.10.2.3.1.1
Raise x to the power of 1.
x15+x1x-455+615x45
Step 2.1.10.2.3.1.2
Use the power rule aman=am+n to combine exponents.
x15+x1-455+615x45
x15+x1-455+615x45
Step 2.1.10.2.3.2
Write 1 as a fraction with a common denominator.
x15+x55-455+615x45
Step 2.1.10.2.3.3
Combine the numerators over the common denominator.
x15+x5-455+615x45
Step 2.1.10.2.3.4
Subtract 4 from 5.
x15+x155+615x45
x15+x155+615x45
Step 2.1.10.2.4
Combine 6 and 15x45.
x15+x155+65x45
Step 2.1.10.2.5
To write x15 as a fraction with a common denominator, multiply by 55.
x15⋅55+x155+65x45
Step 2.1.10.2.6
Combine x15 and 55.
x15⋅55+x155+65x45
Step 2.1.10.2.7
Combine the numerators over the common denominator.
x15⋅5+x155+65x45
Step 2.1.10.2.8
Move 5 to the left of x15.
5⋅x15+x155+65x45
Step 2.1.10.2.9
Add 5x15 and x15.
f′(x)=6x155+65x45
f′(x)=6x155+65x45
f′(x)=6x155+65x45
f′(x)=6x155+65x45
Step 2.2
Find the second derivative.
Step 2.2.1
By the Sum Rule, the derivative of 6x155+65x45 with respect to x is ddx[6x155]+ddx[65x45].
ddx[6x155]+ddx[65x45]
Step 2.2.2
Evaluate ddx[6x155].
Step 2.2.2.1
Since 65 is constant with respect to x, the derivative of 6x155 with respect to x is 65ddx[x15].
65ddx[x15]+ddx[65x45]
Step 2.2.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=15.
65(15x15-1)+ddx[65x45]
Step 2.2.2.3
To write -1 as a fraction with a common denominator, multiply by 55.
65(15x15-1⋅55)+ddx[65x45]
Step 2.2.2.4
Combine -1 and 55.
65(15x15+-1⋅55)+ddx[65x45]
Step 2.2.2.5
Combine the numerators over the common denominator.
65(15x1-1⋅55)+ddx[65x45]
Step 2.2.2.6
Simplify the numerator.
Step 2.2.2.6.1
Multiply -1 by 5.
65(15x1-55)+ddx[65x45]
Step 2.2.2.6.2
Subtract 5 from 1.
65(15x-45)+ddx[65x45]
65(15x-45)+ddx[65x45]
Step 2.2.2.7
Move the negative in front of the fraction.
65(15x-45)+ddx[65x45]
Step 2.2.2.8
Combine 15 and x-45.
65⋅x-455+ddx[65x45]
Step 2.2.2.9
Multiply 65 by x-455.
6x-455⋅5+ddx[65x45]
Step 2.2.2.10
Multiply 5 by 5.
6x-4525+ddx[65x45]
Step 2.2.2.11
Move x-45 to the denominator using the negative exponent rule b-n=1bn.
625x45+ddx[65x45]
625x45+ddx[65x45]
Step 2.2.3
Evaluate ddx[65x45].
Step 2.2.3.1
Since 65 is constant with respect to x, the derivative of 65x45 with respect to x is 65ddx[1x45].
625x45+65ddx[1x45]
Step 2.2.3.2
Rewrite 1x45 as (x45)-1.
625x45+65ddx[(x45)-1]
Step 2.2.3.3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x-1 and g(x)=x45.
Step 2.2.3.3.1
To apply the Chain Rule, set u as x45.
625x45+65(ddu[u-1]ddx[x45])
Step 2.2.3.3.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=-1.
625x45+65(-u-2ddx[x45])
Step 2.2.3.3.3
Replace all occurrences of u with x45.
625x45+65(-(x45)-2ddx[x45])
625x45+65(-(x45)-2ddx[x45])
Step 2.2.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=45.
625x45+65(-(x45)-2(45x45-1))
Step 2.2.3.5
Multiply the exponents in (x45)-2.
Step 2.2.3.5.1
Apply the power rule and multiply exponents, (am)n=amn.
625x45+65(-x45⋅-2(45x45-1))
Step 2.2.3.5.2
Multiply 45⋅-2.
Step 2.2.3.5.2.1
Combine 45 and -2.
625x45+65(-x4⋅-25(45x45-1))
Step 2.2.3.5.2.2
Multiply 4 by -2.
625x45+65(-x-85(45x45-1))
625x45+65(-x-85(45x45-1))
Step 2.2.3.5.3
Move the negative in front of the fraction.
625x45+65(-x-85(45x45-1))
625x45+65(-x-85(45x45-1))
Step 2.2.3.6
To write -1 as a fraction with a common denominator, multiply by 55.
625x45+65(-x-85(45x45-1⋅55))
Step 2.2.3.7
Combine -1 and 55.
625x45+65(-x-85(45x45+-1⋅55))
Step 2.2.3.8
Combine the numerators over the common denominator.
625x45+65(-x-85(45x4-1⋅55))
Step 2.2.3.9
Simplify the numerator.
Step 2.2.3.9.1
Multiply -1 by 5.
625x45+65(-x-85(45x4-55))
Step 2.2.3.9.2
Subtract 5 from 4.
625x45+65(-x-85(45x-15))
625x45+65(-x-85(45x-15))
Step 2.2.3.10
Move the negative in front of the fraction.
625x45+65(-x-85(45x-15))
Step 2.2.3.11
Combine 45 and x-15.
625x45+65(-x-854x-155)
Step 2.2.3.12
Combine 4x-155 and x-85.
625x45+65(-4x-15x-855)
Step 2.2.3.13
Multiply x-15 by x-85 by adding the exponents.
Step 2.2.3.13.1
Move x-85.
625x45+65(-4(x-85x-15)5)
Step 2.2.3.13.2
Use the power rule aman=am+n to combine exponents.
625x45+65(-4x-85-155)
Step 2.2.3.13.3
Combine the numerators over the common denominator.
625x45+65(-4x-8-155)
Step 2.2.3.13.4
Subtract 1 from -8.
625x45+65(-4x-955)
Step 2.2.3.13.5
Move the negative in front of the fraction.
625x45+65(-4x-955)
625x45+65(-4x-955)
Step 2.2.3.14
Move x-95 to the denominator using the negative exponent rule b-n=1bn.
625x45+65(-45x95)
Step 2.2.3.15
Multiply 65 by 45x95.
625x45-6⋅45(5x95)
Step 2.2.3.16
Multiply 6 by 4.
625x45-245(5x95)
Step 2.2.3.17
Multiply 5 by 5.
f′′(x)=625x45-2425x95
f′′(x)=625x45-2425x95
f′′(x)=625x45-2425x95
Step 2.3
The second derivative of f(x) with respect to x is 625x45-2425x95.
625x45-2425x95
625x45-2425x95
Step 3
Step 3.1
Set the second derivative equal to 0.
625x45-2425x95=0
Step 3.2
Find the LCD of the terms in the equation.
Step 3.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
25x45,25x95,1
Step 3.2.2
Since 25x45,25x95,1 contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part 25,25,1 then find LCM for the variable part x45,x95.
Step 3.2.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 3.2.4
25 has factors of 5 and 5.
5⋅5
Step 3.2.5
The number 1 is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 3.2.6
The LCM of 25,25,1 is the result of multiplying all prime factors the greatest number of times they occur in either number.
5⋅5
Step 3.2.7
Multiply 5 by 5.
25
Step 3.2.8
The LCM of x45,x95 is the result of multiplying all prime factors the greatest number of times they occur in either term.
x95
Step 3.2.9
The LCM for 25x45,25x95,1 is the numeric part 25 multiplied by the variable part.
25x95
25x95
Step 3.3
Multiply each term in 625x45-2425x95=0 by 25x95 to eliminate the fractions.
Step 3.3.1
Multiply each term in 625x45-2425x95=0 by 25x95.
625x45(25x95)-2425x95(25x95)=0(25x95)
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Simplify each term.
Step 3.3.2.1.1
Rewrite using the commutative property of multiplication.
25625x45x95-2425x95(25x95)=0(25x95)
Step 3.3.2.1.2
Cancel the common factor of 25.
Step 3.3.2.1.2.1
Cancel the common factor.
25625x45x95-2425x95(25x95)=0(25x95)
Step 3.3.2.1.2.2
Rewrite the expression.
6x45x95-2425x95(25x95)=0(25x95)
6x45x95-2425x95(25x95)=0(25x95)
Step 3.3.2.1.3
Cancel the common factor of x45.
Step 3.3.2.1.3.1
Factor x45 out of x95.
6x45(x45x55)-2425x95(25x95)=0(25x95)
Step 3.3.2.1.3.2
Cancel the common factor.
6x45(x45x55)-2425x95(25x95)=0(25x95)
Step 3.3.2.1.3.3
Rewrite the expression.
6x55-2425x95(25x95)=0(25x95)
6x55-2425x95(25x95)=0(25x95)
Step 3.3.2.1.4
Divide 5 by 5.
6x1-2425x95(25x95)=0(25x95)
Step 3.3.2.1.5
Simplify.
6x-2425x95(25x95)=0(25x95)
Step 3.3.2.1.6
Cancel the common factor of 25x95.
Step 3.3.2.1.6.1
Move the leading negative in -2425x95 into the numerator.
6x+-2425x95(25x95)=0(25x95)
Step 3.3.2.1.6.2
Cancel the common factor.
6x+-2425x95(25x95)=0(25x95)
Step 3.3.2.1.6.3
Rewrite the expression.
6x-24=0(25x95)
6x-24=0(25x95)
6x-24=0(25x95)
6x-24=0(25x95)
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Multiply 0(25x95).
Step 3.3.3.1.1
Multiply 25 by 0.
6x-24=0x95
Step 3.3.3.1.2
Multiply 0 by x95.
6x-24=0
6x-24=0
6x-24=0
6x-24=0
Step 3.4
Solve the equation.
Step 3.4.1
Add 24 to both sides of the equation.
6x=24
Step 3.4.2
Divide each term in 6x=24 by 6 and simplify.
Step 3.4.2.1
Divide each term in 6x=24 by 6.
6x6=246
Step 3.4.2.2
Simplify the left side.
Step 3.4.2.2.1
Cancel the common factor of 6.
Step 3.4.2.2.1.1
Cancel the common factor.
6x6=246
Step 3.4.2.2.1.2
Divide x by 1.
x=246
x=246
x=246
Step 3.4.2.3
Simplify the right side.
Step 3.4.2.3.1
Divide 24 by 6.
x=4
x=4
x=4
x=4
x=4
Step 4
Step 4.1
Substitute 4 in f(x)=x15(x+6) to find the value of y.
Step 4.1.1
Replace the variable x with 4 in the expression.
f(4)=(4)15((4)+6)
Step 4.1.2
Simplify the result.
Step 4.1.2.1
Add 4 and 6.
f(4)=415⋅10
Step 4.1.2.2
Move 10 to the left of 415.
f(4)=10⋅415
Step 4.1.2.3
The final answer is 10⋅415.
10⋅415
10⋅415
10⋅415
Step 4.2
The point found by substituting 4 in f(x)=x15(x+6) is (4,10⋅415). This point can be an inflection point.
(4,10⋅415)
(4,10⋅415)
Step 5
Split (-∞,∞) into intervals around the points that could potentially be inflection points.
(-∞,4)∪(4,∞)
Step 6
Step 6.1
Replace the variable x with 3.9 in the expression.
f′′(3.9)=625(3.9)45-2425(3.9)95
Step 6.2
Simplify the result.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
Raise 3.9 to the power of 45.
f′′(3.9)=625⋅2.97065136-2425(3.9)95
Step 6.2.1.2
Multiply 25 by 2.97065136.
f′′(3.9)=674.26628404-2425(3.9)95
Step 6.2.1.3
Divide 6 by 74.26628404.
f′′(3.9)=0.08079036-2425(3.9)95
Step 6.2.1.4
Raise 3.9 to the power of 95.
f′′(3.9)=0.08079036-2425⋅11.58554031
Step 6.2.1.5
Multiply 25 by 11.58554031.
f′′(3.9)=0.08079036-24289.63850777
Step 6.2.1.6
Divide 24 by 289.63850777.
f′′(3.9)=0.08079036-1⋅0.08286191
Step 6.2.1.7
Multiply -1 by 0.08286191.
f′′(3.9)=0.08079036-0.08286191
f′′(3.9)=0.08079036-0.08286191
Step 6.2.2
Subtract 0.08286191 from 0.08079036.
f′′(3.9)=-0.00207154
Step 6.2.3
The final answer is -0.00207154.
-0.00207154
-0.00207154
Step 6.3
At 3.9, the second derivative is -0.00207154. Since this is negative, the second derivative is decreasing on the interval (-∞,4)
Decreasing on (-∞,4) since f′′(x)<0
Decreasing on (-∞,4) since f′′(x)<0
Step 7
Step 7.1
Replace the variable x with 4.1 in the expression.
f′′(4.1)=625(4.1)45-2425(4.1)95
Step 7.2
Simplify the result.
Step 7.2.1
Simplify each term.
Step 7.2.1.1
Raise 4.1 to the power of 45.
f′′(4.1)=625⋅3.09191171-2425(4.1)95
Step 7.2.1.2
Multiply 25 by 3.09191171.
f′′(4.1)=677.29779298-2425(4.1)95
Step 7.2.1.3
Divide 6 by 77.29779298.
f′′(4.1)=0.07762187-2425(4.1)95
Step 7.2.1.4
Raise 4.1 to the power of 95.
f′′(4.1)=0.07762187-2425⋅12.67683804
Step 7.2.1.5
Multiply 25 by 12.67683804.
f′′(4.1)=0.07762187-24316.92095122
Step 7.2.1.6
Divide 24 by 316.92095122.
f′′(4.1)=0.07762187-1⋅0.07572866
Step 7.2.1.7
Multiply -1 by 0.07572866.
f′′(4.1)=0.07762187-0.07572866
f′′(4.1)=0.07762187-0.07572866
Step 7.2.2
Subtract 0.07572866 from 0.07762187.
f′′(4.1)=0.00189321
Step 7.2.3
The final answer is 0.00189321.
0.00189321
0.00189321
Step 7.3
At 4.1, the second derivative is 0.00189321. Since this is positive, the second derivative is increasing on the interval (4,∞).
Increasing on (4,∞) since f′′(x)>0
Increasing on (4,∞) since f′′(x)>0
Step 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection point in this case is (4,10⋅415).
(4,10⋅415)
Step 9
