Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Step 1.1.2.1
Differentiate using the Power Rule which states that is where .
Step 1.1.2.2
To write as a fraction with a common denominator, multiply by .
Step 1.1.2.3
Combine and .
Step 1.1.2.4
Combine the numerators over the common denominator.
Step 1.1.2.5
Simplify the numerator.
Step 1.1.2.5.1
Multiply by .
Step 1.1.2.5.2
Subtract from .
Step 1.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4
Simplify.
Step 1.1.4.1
Add and .
Step 1.1.4.2
Combine and .
Step 1.2
Find the second derivative.
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
To write as a fraction with a common denominator, multiply by .
Step 1.2.4
Combine and .
Step 1.2.5
Combine the numerators over the common denominator.
Step 1.2.6
Simplify the numerator.
Step 1.2.6.1
Multiply by .
Step 1.2.6.2
Subtract from .
Step 1.2.7
Move the negative in front of the fraction.
Step 1.2.8
Combine and .
Step 1.2.9
Multiply by .
Step 1.2.10
Multiply.
Step 1.2.10.1
Multiply by .
Step 1.2.10.2
Multiply by .
Step 1.2.10.3
Move to the denominator using the negative exponent rule .
Step 1.3
The second derivative of with respect to is .
Step 2
Step 2.1
Set the second derivative equal to .
Step 2.2
Set the numerator equal to zero.
Step 2.3
Since , there are no solutions.
No solution
No solution
Step 3
No values found that can make the second derivative equal to .
No Inflection Points