Calculus Examples

Find the Inflection Points f(x)=2x^3-9x^2+12x-6
Step 1
Find the second derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Tap for more steps...
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Multiply by .
Step 1.1.3
Evaluate .
Tap for more steps...
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Evaluate .
Tap for more steps...
Step 1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.1.4.3
Multiply by .
Step 1.1.5
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5.2
Add and .
Step 1.2
Find the second derivative.
Tap for more steps...
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Evaluate .
Tap for more steps...
Step 1.2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.2.3
Multiply by .
Step 1.2.3
Evaluate .
Tap for more steps...
Step 1.2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3.3
Multiply by .
Step 1.2.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.4.2
Add and .
Step 1.3
The second derivative of with respect to is .
Step 2
Set the second derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the second derivative equal to .
Step 2.2
Add to both sides of the equation.
Step 2.3
Divide each term in by and simplify.
Tap for more steps...
Step 2.3.1
Divide each term in by .
Step 2.3.2
Simplify the left side.
Tap for more steps...
Step 2.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.3.2.1.1
Cancel the common factor.
Step 2.3.2.1.2
Divide by .
Step 2.3.3
Simplify the right side.
Tap for more steps...
Step 2.3.3.1
Cancel the common factor of and .
Tap for more steps...
Step 2.3.3.1.1
Factor out of .
Step 2.3.3.1.2
Cancel the common factors.
Tap for more steps...
Step 2.3.3.1.2.1
Factor out of .
Step 2.3.3.1.2.2
Cancel the common factor.
Step 2.3.3.1.2.3
Rewrite the expression.
Step 3
Find the points where the second derivative is .
Tap for more steps...
Step 3.1
Substitute in to find the value of .
Tap for more steps...
Step 3.1.1
Replace the variable with in the expression.
Step 3.1.2
Simplify the result.
Tap for more steps...
Step 3.1.2.1
Simplify each term.
Tap for more steps...
Step 3.1.2.1.1
Apply the product rule to .
Step 3.1.2.1.2
Raise to the power of .
Step 3.1.2.1.3
Raise to the power of .
Step 3.1.2.1.4
Cancel the common factor of .
Tap for more steps...
Step 3.1.2.1.4.1
Factor out of .
Step 3.1.2.1.4.2
Cancel the common factor.
Step 3.1.2.1.4.3
Rewrite the expression.
Step 3.1.2.1.5
Apply the product rule to .
Step 3.1.2.1.6
Raise to the power of .
Step 3.1.2.1.7
Raise to the power of .
Step 3.1.2.1.8
Multiply .
Tap for more steps...
Step 3.1.2.1.8.1
Combine and .
Step 3.1.2.1.8.2
Multiply by .
Step 3.1.2.1.9
Move the negative in front of the fraction.
Step 3.1.2.1.10
Cancel the common factor of .
Tap for more steps...
Step 3.1.2.1.10.1
Factor out of .
Step 3.1.2.1.10.2
Cancel the common factor.
Step 3.1.2.1.10.3
Rewrite the expression.
Step 3.1.2.1.11
Multiply by .
Step 3.1.2.2
Combine fractions.
Tap for more steps...
Step 3.1.2.2.1
Combine the numerators over the common denominator.
Step 3.1.2.2.2
Subtract from .
Step 3.1.2.3
Find the common denominator.
Tap for more steps...
Step 3.1.2.3.1
Write as a fraction with denominator .
Step 3.1.2.3.2
Multiply by .
Step 3.1.2.3.3
Multiply by .
Step 3.1.2.3.4
Write as a fraction with denominator .
Step 3.1.2.3.5
Multiply by .
Step 3.1.2.3.6
Multiply by .
Step 3.1.2.4
Combine the numerators over the common denominator.
Step 3.1.2.5
Simplify each term.
Tap for more steps...
Step 3.1.2.5.1
Multiply by .
Step 3.1.2.5.2
Multiply by .
Step 3.1.2.6
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.1.2.6.1
Subtract from .
Step 3.1.2.6.2
Subtract from .
Step 3.1.2.6.3
Cancel the common factor of and .
Tap for more steps...
Step 3.1.2.6.3.1
Factor out of .
Step 3.1.2.6.3.2
Cancel the common factors.
Tap for more steps...
Step 3.1.2.6.3.2.1
Factor out of .
Step 3.1.2.6.3.2.2
Cancel the common factor.
Step 3.1.2.6.3.2.3
Rewrite the expression.
Step 3.1.2.6.4
Move the negative in front of the fraction.
Step 3.1.2.7
The final answer is .
Step 3.2
The point found by substituting in is . This point can be an inflection point.
Step 4
Split into intervals around the points that could potentially be inflection points.
Step 5
Substitute a value from the interval into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Multiply by .
Step 5.2.2
Subtract from .
Step 5.2.3
The final answer is .
Step 5.3
At , the second derivative is . Since this is negative, the second derivative is decreasing on the interval
Decreasing on since
Decreasing on since
Step 6
Substitute a value from the interval into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Multiply by .
Step 6.2.2
Subtract from .
Step 6.2.3
The final answer is .
Step 6.3
At , the second derivative is . Since this is positive, the second derivative is increasing on the interval .
Increasing on since
Increasing on since
Step 7
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection point in this case is .
Step 8