Calculus Examples

Find the Inflection Points g(x)=x(x^4-3)
Step 1
Find the second derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Differentiate using the Product Rule which states that is where and .
Step 1.1.2
Differentiate.
Tap for more steps...
Step 1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.4
Add and .
Step 1.1.3
Raise to the power of .
Step 1.1.4
Use the power rule to combine exponents.
Step 1.1.5
Add and .
Step 1.1.6
Differentiate using the Power Rule which states that is where .
Step 1.1.7
Simplify by adding terms.
Tap for more steps...
Step 1.1.7.1
Multiply by .
Step 1.1.7.2
Add and .
Step 1.2
Find the second derivative.
Tap for more steps...
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Evaluate .
Tap for more steps...
Step 1.2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.2.3
Multiply by .
Step 1.2.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3.2
Add and .
Step 1.3
The second derivative of with respect to is .
Step 2
Set the second derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the second derivative equal to .
Step 2.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.2.1
Divide each term in by .
Step 2.2.2
Simplify the left side.
Tap for more steps...
Step 2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.2.1.1
Cancel the common factor.
Step 2.2.2.1.2
Divide by .
Step 2.2.3
Simplify the right side.
Tap for more steps...
Step 2.2.3.1
Divide by .
Step 2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.4
Simplify .
Tap for more steps...
Step 2.4.1
Rewrite as .
Step 2.4.2
Pull terms out from under the radical, assuming real numbers.
Step 3
Find the points where the second derivative is .
Tap for more steps...
Step 3.1
Substitute in to find the value of .
Tap for more steps...
Step 3.1.1
Replace the variable with in the expression.
Step 3.1.2
Simplify the result.
Tap for more steps...
Step 3.1.2.1
Raising to any positive power yields .
Step 3.1.2.2
Subtract from .
Step 3.1.2.3
Multiply by .
Step 3.1.2.4
The final answer is .
Step 3.2
The point found by substituting in is . This point can be an inflection point.
Step 4
Split into intervals around the points that could potentially be inflection points.
Step 5
Substitute a value from the interval into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Raise to the power of .
Step 5.2.2
Multiply by .
Step 5.2.3
The final answer is .
Step 5.3
At , the second derivative is . Since this is negative, the second derivative is decreasing on the interval
Decreasing on since
Decreasing on since
Step 6
Substitute a value from the interval into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Raise to the power of .
Step 6.2.2
Multiply by .
Step 6.2.3
The final answer is .
Step 6.3
At , the second derivative is . Since this is positive, the second derivative is increasing on the interval .
Increasing on since
Increasing on since
Step 7
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection point in this case is .
Step 8