Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Differentiate using the Quotient Rule which states that is where and .
Step 1.1.2
Differentiate.
Step 1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.4
Differentiate using the Power Rule which states that is where .
Step 1.1.2.5
Multiply by .
Step 1.1.2.6
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.7
Add and .
Step 1.1.2.8
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.9
Differentiate using the Power Rule which states that is where .
Step 1.1.2.10
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.11
Simplify the expression.
Step 1.1.2.11.1
Add and .
Step 1.1.2.11.2
Multiply by .
Step 1.1.3
Simplify.
Step 1.1.3.1
Apply the distributive property.
Step 1.1.3.2
Simplify the numerator.
Step 1.1.3.2.1
Simplify each term.
Step 1.1.3.2.1.1
Expand using the FOIL Method.
Step 1.1.3.2.1.1.1
Apply the distributive property.
Step 1.1.3.2.1.1.2
Apply the distributive property.
Step 1.1.3.2.1.1.3
Apply the distributive property.
Step 1.1.3.2.1.2
Simplify and combine like terms.
Step 1.1.3.2.1.2.1
Simplify each term.
Step 1.1.3.2.1.2.1.1
Rewrite using the commutative property of multiplication.
Step 1.1.3.2.1.2.1.2
Multiply by by adding the exponents.
Step 1.1.3.2.1.2.1.2.1
Move .
Step 1.1.3.2.1.2.1.2.2
Multiply by .
Step 1.1.3.2.1.2.1.3
Move to the left of .
Step 1.1.3.2.1.2.1.4
Multiply by .
Step 1.1.3.2.1.2.1.5
Multiply by .
Step 1.1.3.2.1.2.2
Subtract from .
Step 1.1.3.2.1.3
Multiply by .
Step 1.1.3.2.1.4
Multiply by .
Step 1.1.3.2.2
Subtract from .
Step 1.1.3.2.3
Add and .
Step 1.1.3.2.4
Subtract from .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Set the numerator equal to zero.
Step 2.3
Solve the equation for .
Step 2.3.1
Use the quadratic formula to find the solutions.
Step 2.3.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.3.3
Simplify.
Step 2.3.3.1
Simplify the numerator.
Step 2.3.3.1.1
Raise to the power of .
Step 2.3.3.1.2
Multiply .
Step 2.3.3.1.2.1
Multiply by .
Step 2.3.3.1.2.2
Multiply by .
Step 2.3.3.1.3
Add and .
Step 2.3.3.1.4
Rewrite as .
Step 2.3.3.1.4.1
Factor out of .
Step 2.3.3.1.4.2
Rewrite as .
Step 2.3.3.1.5
Pull terms out from under the radical.
Step 2.3.3.2
Multiply by .
Step 2.3.3.3
Simplify .
Step 2.3.4
Simplify the expression to solve for the portion of the .
Step 2.3.4.1
Simplify the numerator.
Step 2.3.4.1.1
Raise to the power of .
Step 2.3.4.1.2
Multiply .
Step 2.3.4.1.2.1
Multiply by .
Step 2.3.4.1.2.2
Multiply by .
Step 2.3.4.1.3
Add and .
Step 2.3.4.1.4
Rewrite as .
Step 2.3.4.1.4.1
Factor out of .
Step 2.3.4.1.4.2
Rewrite as .
Step 2.3.4.1.5
Pull terms out from under the radical.
Step 2.3.4.2
Multiply by .
Step 2.3.4.3
Simplify .
Step 2.3.4.4
Change the to .
Step 2.3.5
Simplify the expression to solve for the portion of the .
Step 2.3.5.1
Simplify the numerator.
Step 2.3.5.1.1
Raise to the power of .
Step 2.3.5.1.2
Multiply .
Step 2.3.5.1.2.1
Multiply by .
Step 2.3.5.1.2.2
Multiply by .
Step 2.3.5.1.3
Add and .
Step 2.3.5.1.4
Rewrite as .
Step 2.3.5.1.4.1
Factor out of .
Step 2.3.5.1.4.2
Rewrite as .
Step 2.3.5.1.5
Pull terms out from under the radical.
Step 2.3.5.2
Multiply by .
Step 2.3.5.3
Simplify .
Step 2.3.5.4
Change the to .
Step 2.3.6
The final answer is the combination of both solutions.
Step 3
Step 3.1
Set the denominator in equal to to find where the expression is undefined.
Step 3.2
Solve for .
Step 3.2.1
Set the equal to .
Step 3.2.2
Add to both sides of the equation.
Step 4
Step 4.1
Evaluate at .
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Step 4.1.2.1
Simplify the numerator.
Step 4.1.2.1.1
Rewrite as .
Step 4.1.2.1.2
Expand using the FOIL Method.
Step 4.1.2.1.2.1
Apply the distributive property.
Step 4.1.2.1.2.2
Apply the distributive property.
Step 4.1.2.1.2.3
Apply the distributive property.
Step 4.1.2.1.3
Simplify and combine like terms.
Step 4.1.2.1.3.1
Simplify each term.
Step 4.1.2.1.3.1.1
Multiply by .
Step 4.1.2.1.3.1.2
Move to the left of .
Step 4.1.2.1.3.1.3
Combine using the product rule for radicals.
Step 4.1.2.1.3.1.4
Multiply by .
Step 4.1.2.1.3.1.5
Rewrite as .
Step 4.1.2.1.3.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 4.1.2.1.3.2
Add and .
Step 4.1.2.1.3.3
Add and .
Step 4.1.2.1.4
Apply the distributive property.
Step 4.1.2.1.5
Multiply by .
Step 4.1.2.1.6
Subtract from .
Step 4.1.2.1.7
Add and .
Step 4.1.2.1.8
Subtract from .
Step 4.1.2.2
Simplify the denominator.
Step 4.1.2.2.1
Subtract from .
Step 4.1.2.2.2
Add and .
Step 4.1.2.3
Multiply by .
Step 4.1.2.4
Combine and simplify the denominator.
Step 4.1.2.4.1
Multiply by .
Step 4.1.2.4.2
Raise to the power of .
Step 4.1.2.4.3
Raise to the power of .
Step 4.1.2.4.4
Use the power rule to combine exponents.
Step 4.1.2.4.5
Add and .
Step 4.1.2.4.6
Rewrite as .
Step 4.1.2.4.6.1
Use to rewrite as .
Step 4.1.2.4.6.2
Apply the power rule and multiply exponents, .
Step 4.1.2.4.6.3
Combine and .
Step 4.1.2.4.6.4
Cancel the common factor of .
Step 4.1.2.4.6.4.1
Cancel the common factor.
Step 4.1.2.4.6.4.2
Rewrite the expression.
Step 4.1.2.4.6.5
Evaluate the exponent.
Step 4.1.2.5
Apply the distributive property.
Step 4.1.2.6
Multiply .
Step 4.1.2.6.1
Raise to the power of .
Step 4.1.2.6.2
Raise to the power of .
Step 4.1.2.6.3
Use the power rule to combine exponents.
Step 4.1.2.6.4
Add and .
Step 4.1.2.7
Simplify each term.
Step 4.1.2.7.1
Rewrite as .
Step 4.1.2.7.1.1
Use to rewrite as .
Step 4.1.2.7.1.2
Apply the power rule and multiply exponents, .
Step 4.1.2.7.1.3
Combine and .
Step 4.1.2.7.1.4
Cancel the common factor of .
Step 4.1.2.7.1.4.1
Cancel the common factor.
Step 4.1.2.7.1.4.2
Rewrite the expression.
Step 4.1.2.7.1.5
Evaluate the exponent.
Step 4.1.2.7.2
Multiply by .
Step 4.1.2.8
Cancel the common factor of and .
Step 4.1.2.8.1
Factor out of .
Step 4.1.2.8.2
Factor out of .
Step 4.1.2.8.3
Factor out of .
Step 4.1.2.8.4
Cancel the common factors.
Step 4.1.2.8.4.1
Factor out of .
Step 4.1.2.8.4.2
Cancel the common factor.
Step 4.1.2.8.4.3
Rewrite the expression.
Step 4.1.2.8.4.4
Divide by .
Step 4.2
Evaluate at .
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Step 4.2.2.1
Simplify the numerator.
Step 4.2.2.1.1
Rewrite as .
Step 4.2.2.1.2
Expand using the FOIL Method.
Step 4.2.2.1.2.1
Apply the distributive property.
Step 4.2.2.1.2.2
Apply the distributive property.
Step 4.2.2.1.2.3
Apply the distributive property.
Step 4.2.2.1.3
Simplify and combine like terms.
Step 4.2.2.1.3.1
Simplify each term.
Step 4.2.2.1.3.1.1
Multiply by .
Step 4.2.2.1.3.1.2
Multiply by .
Step 4.2.2.1.3.1.3
Multiply by .
Step 4.2.2.1.3.1.4
Multiply .
Step 4.2.2.1.3.1.4.1
Multiply by .
Step 4.2.2.1.3.1.4.2
Multiply by .
Step 4.2.2.1.3.1.4.3
Raise to the power of .
Step 4.2.2.1.3.1.4.4
Raise to the power of .
Step 4.2.2.1.3.1.4.5
Use the power rule to combine exponents.
Step 4.2.2.1.3.1.4.6
Add and .
Step 4.2.2.1.3.1.5
Rewrite as .
Step 4.2.2.1.3.1.5.1
Use to rewrite as .
Step 4.2.2.1.3.1.5.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.3.1.5.3
Combine and .
Step 4.2.2.1.3.1.5.4
Cancel the common factor of .
Step 4.2.2.1.3.1.5.4.1
Cancel the common factor.
Step 4.2.2.1.3.1.5.4.2
Rewrite the expression.
Step 4.2.2.1.3.1.5.5
Evaluate the exponent.
Step 4.2.2.1.3.2
Add and .
Step 4.2.2.1.3.3
Subtract from .
Step 4.2.2.1.4
Apply the distributive property.
Step 4.2.2.1.5
Multiply by .
Step 4.2.2.1.6
Multiply by .
Step 4.2.2.1.7
Subtract from .
Step 4.2.2.1.8
Add and .
Step 4.2.2.1.9
Add and .
Step 4.2.2.2
Simplify the denominator.
Step 4.2.2.2.1
Subtract from .
Step 4.2.2.2.2
Subtract from .
Step 4.2.2.3
Move the negative in front of the fraction.
Step 4.2.2.4
Multiply by .
Step 4.2.2.5
Combine and simplify the denominator.
Step 4.2.2.5.1
Multiply by .
Step 4.2.2.5.2
Raise to the power of .
Step 4.2.2.5.3
Raise to the power of .
Step 4.2.2.5.4
Use the power rule to combine exponents.
Step 4.2.2.5.5
Add and .
Step 4.2.2.5.6
Rewrite as .
Step 4.2.2.5.6.1
Use to rewrite as .
Step 4.2.2.5.6.2
Apply the power rule and multiply exponents, .
Step 4.2.2.5.6.3
Combine and .
Step 4.2.2.5.6.4
Cancel the common factor of .
Step 4.2.2.5.6.4.1
Cancel the common factor.
Step 4.2.2.5.6.4.2
Rewrite the expression.
Step 4.2.2.5.6.5
Evaluate the exponent.
Step 4.2.2.6
Apply the distributive property.
Step 4.2.2.7
Multiply .
Step 4.2.2.7.1
Raise to the power of .
Step 4.2.2.7.2
Raise to the power of .
Step 4.2.2.7.3
Use the power rule to combine exponents.
Step 4.2.2.7.4
Add and .
Step 4.2.2.8
Simplify each term.
Step 4.2.2.8.1
Rewrite as .
Step 4.2.2.8.1.1
Use to rewrite as .
Step 4.2.2.8.1.2
Apply the power rule and multiply exponents, .
Step 4.2.2.8.1.3
Combine and .
Step 4.2.2.8.1.4
Cancel the common factor of .
Step 4.2.2.8.1.4.1
Cancel the common factor.
Step 4.2.2.8.1.4.2
Rewrite the expression.
Step 4.2.2.8.1.5
Evaluate the exponent.
Step 4.2.2.8.2
Multiply by .
Step 4.2.2.9
Simplify terms.
Step 4.2.2.9.1
Cancel the common factor of and .
Step 4.2.2.9.1.1
Factor out of .
Step 4.2.2.9.1.2
Factor out of .
Step 4.2.2.9.1.3
Factor out of .
Step 4.2.2.9.1.4
Cancel the common factors.
Step 4.2.2.9.1.4.1
Factor out of .
Step 4.2.2.9.1.4.2
Cancel the common factor.
Step 4.2.2.9.1.4.3
Rewrite the expression.
Step 4.2.2.9.1.4.4
Divide by .
Step 4.2.2.9.2
Apply the distributive property.
Step 4.2.2.9.3
Multiply.
Step 4.2.2.9.3.1
Multiply by .
Step 4.2.2.9.3.2
Multiply by .
Step 4.3
Evaluate at .
Step 4.3.1
Substitute for .
Step 4.3.2
Simplify.
Step 4.3.2.1
Subtract from .
Step 4.3.2.2
The expression contains a division by . The expression is undefined.
Undefined
Undefined
Undefined
Step 4.4
List all of the points.
Step 5