Enter a problem...
Calculus Examples
f(x)=x-5x15f(x)=x−5x15
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Differentiate.
Step 1.1.1.1
By the Sum Rule, the derivative of x-5x15x−5x15 with respect to x is ddx[x]+ddx[-5x15].
ddx[x]+ddx[-5x15]
Step 1.1.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
1+ddx[-5x15]
1+ddx[-5x15]
Step 1.1.2
Evaluate ddx[-5x15].
Step 1.1.2.1
Since -5 is constant with respect to x, the derivative of -5x15 with respect to x is -5ddx[x15].
1-5ddx[x15]
Step 1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=15.
1-5(15x15-1)
Step 1.1.2.3
To write -1 as a fraction with a common denominator, multiply by 55.
1-5(15x15-1⋅55)
Step 1.1.2.4
Combine -1 and 55.
1-5(15x15+-1⋅55)
Step 1.1.2.5
Combine the numerators over the common denominator.
1-5(15x1-1⋅55)
Step 1.1.2.6
Simplify the numerator.
Step 1.1.2.6.1
Multiply -1 by 5.
1-5(15x1-55)
Step 1.1.2.6.2
Subtract 5 from 1.
1-5(15x-45)
1-5(15x-45)
Step 1.1.2.7
Move the negative in front of the fraction.
1-5(15x-45)
Step 1.1.2.8
Combine 15 and x-45.
1-5x-455
Step 1.1.2.9
Combine -5 and x-455.
1+-5x-455
Step 1.1.2.10
Move x-45 to the denominator using the negative exponent rule b-n=1bn.
1+-55x45
Step 1.1.2.11
Factor 5 out of -5.
1+5⋅-15x45
Step 1.1.2.12
Cancel the common factors.
Step 1.1.2.12.1
Factor 5 out of 5x45.
1+5⋅-15(x45)
Step 1.1.2.12.2
Cancel the common factor.
1+5⋅-15x45
Step 1.1.2.12.3
Rewrite the expression.
1+-1x45
1+-1x45
Step 1.1.2.13
Move the negative in front of the fraction.
f′(x)=1-1x45
f′(x)=1-1x45
f′(x)=1-1x45
Step 1.2
The first derivative of f(x) with respect to x is 1-1x45.
1-1x45
1-1x45
Step 2
Step 2.1
Set the first derivative equal to 0.
1-1x45=0
Step 2.2
Subtract 1 from both sides of the equation.
-1x45=-1
Step 2.3
Find the LCD of the terms in the equation.
Step 2.3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
x45,1
Step 2.3.2
The LCM of one and any expression is the expression.
x45
x45
Step 2.4
Multiply each term in -1x45=-1 by x45 to eliminate the fractions.
Step 2.4.1
Multiply each term in -1x45=-1 by x45.
-1x45x45=-x45
Step 2.4.2
Simplify the left side.
Step 2.4.2.1
Cancel the common factor of x45.
Step 2.4.2.1.1
Move the leading negative in -1x45 into the numerator.
-1x45x45=-x45
Step 2.4.2.1.2
Cancel the common factor.
-1x45x45=-x45
Step 2.4.2.1.3
Rewrite the expression.
-1=-x45
-1=-x45
-1=-x45
-1=-x45
Step 2.5
Solve the equation.
Step 2.5.1
Rewrite the equation as -x45=-1.
-x45=-1
Step 2.5.2
Divide each term in -x45=-1 by -1 and simplify.
Step 2.5.2.1
Divide each term in -x45=-1 by -1.
-x45-1=-1-1
Step 2.5.2.2
Simplify the left side.
Step 2.5.2.2.1
Dividing two negative values results in a positive value.
x451=-1-1
Step 2.5.2.2.2
Divide x45 by 1.
x45=-1-1
x45=-1-1
Step 2.5.2.3
Simplify the right side.
Step 2.5.2.3.1
Divide -1 by -1.
x45=1
x45=1
x45=1
Step 2.5.3
Raise each side of the equation to the power of 54 to eliminate the fractional exponent on the left side.
(x45)54=±154
Step 2.5.4
Simplify the exponent.
Step 2.5.4.1
Simplify the left side.
Step 2.5.4.1.1
Simplify (x45)54.
Step 2.5.4.1.1.1
Multiply the exponents in (x45)54.
Step 2.5.4.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x45⋅54=±154
Step 2.5.4.1.1.1.2
Cancel the common factor of 4.
Step 2.5.4.1.1.1.2.1
Cancel the common factor.
x45⋅54=±154
Step 2.5.4.1.1.1.2.2
Rewrite the expression.
x15⋅5=±154
x15⋅5=±154
Step 2.5.4.1.1.1.3
Cancel the common factor of 5.
Step 2.5.4.1.1.1.3.1
Cancel the common factor.
x15⋅5=±154
Step 2.5.4.1.1.1.3.2
Rewrite the expression.
x1=±154
x1=±154
x1=±154
Step 2.5.4.1.1.2
Simplify.
x=±154
x=±154
x=±154
Step 2.5.4.2
Simplify the right side.
Step 2.5.4.2.1
One to any power is one.
x=±1
x=±1
x=±1
Step 2.5.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.5.5.1
First, use the positive value of the ± to find the first solution.
x=1
Step 2.5.5.2
Next, use the negative value of the ± to find the second solution.
x=-1
Step 2.5.5.3
The complete solution is the result of both the positive and negative portions of the solution.
x=1,-1
x=1,-1
x=1,-1
x=1,-1
Step 3
Step 3.1
Apply the rule xmn=n√xm to rewrite the exponentiation as a radical.
1-15√x4
Step 3.2
Set the denominator in 15√x4 equal to 0 to find where the expression is undefined.
5√x4=0
Step 3.3
Solve for x.
Step 3.3.1
To remove the radical on the left side of the equation, raise both sides of the equation to the power of 5.
5√x45=05
Step 3.3.2
Simplify each side of the equation.
Step 3.3.2.1
Use n√ax=axn to rewrite 5√x4 as x45.
(x45)5=05
Step 3.3.2.2
Simplify the left side.
Step 3.3.2.2.1
Multiply the exponents in (x45)5.
Step 3.3.2.2.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x45⋅5=05
Step 3.3.2.2.1.2
Cancel the common factor of 5.
Step 3.3.2.2.1.2.1
Cancel the common factor.
x45⋅5=05
Step 3.3.2.2.1.2.2
Rewrite the expression.
x4=05
x4=05
x4=05
x4=05
Step 3.3.2.3
Simplify the right side.
Step 3.3.2.3.1
Raising 0 to any positive power yields 0.
x4=0
x4=0
x4=0
Step 3.3.3
Solve for x.
Step 3.3.3.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±4√0
Step 3.3.3.2
Simplify ±4√0.
Step 3.3.3.2.1
Rewrite 0 as 04.
x=±4√04
Step 3.3.3.2.2
Pull terms out from under the radical, assuming positive real numbers.
x=±0
Step 3.3.3.2.3
Plus or minus 0 is 0.
x=0
x=0
x=0
x=0
x=0
Step 4
Step 4.1
Evaluate at x=1.
Step 4.1.1
Substitute 1 for x.
(1)-5(1)15
Step 4.1.2
Simplify.
Step 4.1.2.1
Simplify each term.
Step 4.1.2.1.1
One to any power is one.
1-5⋅1
Step 4.1.2.1.2
Multiply -5 by 1.
1-5
1-5
Step 4.1.2.2
Subtract 5 from 1.
-4
-4
-4
Step 4.2
Evaluate at x=-1.
Step 4.2.1
Substitute -1 for x.
(-1)-5(-1)15
Step 4.2.2
Simplify.
Step 4.2.2.1
Simplify each term.
Step 4.2.2.1.1
Rewrite -1 as (-1)5.
-1-5((-1)5)15
Step 4.2.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
-1-5(-1)5(15)
Step 4.2.2.1.3
Cancel the common factor of 5.
Step 4.2.2.1.3.1
Cancel the common factor.
-1-5(-1)5(15)
Step 4.2.2.1.3.2
Rewrite the expression.
-1-5(-1)1
-1-5(-1)1
Step 4.2.2.1.4
Evaluate the exponent.
-1-5⋅-1
Step 4.2.2.1.5
Multiply -5 by -1.
-1+5
-1+5
Step 4.2.2.2
Add -1 and 5.
4
4
4
Step 4.3
Evaluate at x=0.
Step 4.3.1
Substitute 0 for x.
(0)-5(0)15
Step 4.3.2
Simplify.
Step 4.3.2.1
Simplify each term.
Step 4.3.2.1.1
Rewrite 0 as 05.
0-5(05)15
Step 4.3.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
0-5⋅05(15)
Step 4.3.2.1.3
Cancel the common factor of 5.
Step 4.3.2.1.3.1
Cancel the common factor.
0-5⋅05(15)
Step 4.3.2.1.3.2
Rewrite the expression.
0-5⋅01
0-5⋅01
Step 4.3.2.1.4
Evaluate the exponent.
0-5⋅0
Step 4.3.2.1.5
Multiply -5 by 0.
0+0
0+0
Step 4.3.2.2
Add 0 and 0.
0
0
0
Step 4.4
List all of the points.
(1,-4),(-1,4),(0,0)
(1,-4),(-1,4),(0,0)
Step 5
