Calculus Examples

Find the Critical Points f(x)=x+ square root of 1-x
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Differentiate.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2
Evaluate .
Tap for more steps...
Step 1.1.2.1
Use to rewrite as .
Step 1.1.2.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.1.2.2.1
To apply the Chain Rule, set as .
Step 1.1.2.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.2.3
Replace all occurrences of with .
Step 1.1.2.3
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.6
Differentiate using the Power Rule which states that is where .
Step 1.1.2.7
To write as a fraction with a common denominator, multiply by .
Step 1.1.2.8
Combine and .
Step 1.1.2.9
Combine the numerators over the common denominator.
Step 1.1.2.10
Simplify the numerator.
Tap for more steps...
Step 1.1.2.10.1
Multiply by .
Step 1.1.2.10.2
Subtract from .
Step 1.1.2.11
Move the negative in front of the fraction.
Step 1.1.2.12
Multiply by .
Step 1.1.2.13
Subtract from .
Step 1.1.2.14
Combine and .
Step 1.1.2.15
Combine and .
Step 1.1.2.16
Move to the left of .
Step 1.1.2.17
Rewrite as .
Step 1.1.2.18
Move to the denominator using the negative exponent rule .
Step 1.1.2.19
Move the negative in front of the fraction.
Step 1.2
The first derivative of with respect to is .
Step 2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the first derivative equal to .
Step 2.2
Subtract from both sides of the equation.
Step 2.3
Find the LCD of the terms in the equation.
Tap for more steps...
Step 2.3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.3.2
The LCM of one and any expression is the expression.
Step 2.4
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 2.4.1
Multiply each term in by .
Step 2.4.2
Simplify the left side.
Tap for more steps...
Step 2.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.4.2.1.1
Move the leading negative in into the numerator.
Step 2.4.2.1.2
Cancel the common factor.
Step 2.4.2.1.3
Rewrite the expression.
Step 2.4.3
Simplify the right side.
Tap for more steps...
Step 2.4.3.1
Multiply by .
Step 2.5
Solve the equation.
Tap for more steps...
Step 2.5.1
Rewrite the equation as .
Step 2.5.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.2.1
Divide each term in by .
Step 2.5.2.2
Simplify the left side.
Tap for more steps...
Step 2.5.2.2.1
Cancel the common factor.
Step 2.5.2.2.2
Divide by .
Step 2.5.2.3
Simplify the right side.
Tap for more steps...
Step 2.5.2.3.1
Dividing two negative values results in a positive value.
Step 2.5.3
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 2.5.4
Simplify the exponent.
Tap for more steps...
Step 2.5.4.1
Simplify the left side.
Tap for more steps...
Step 2.5.4.1.1
Simplify .
Tap for more steps...
Step 2.5.4.1.1.1
Multiply the exponents in .
Tap for more steps...
Step 2.5.4.1.1.1.1
Apply the power rule and multiply exponents, .
Step 2.5.4.1.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.5.4.1.1.1.2.1
Cancel the common factor.
Step 2.5.4.1.1.1.2.2
Rewrite the expression.
Step 2.5.4.1.1.2
Simplify.
Step 2.5.4.2
Simplify the right side.
Tap for more steps...
Step 2.5.4.2.1
Simplify .
Tap for more steps...
Step 2.5.4.2.1.1
Apply the product rule to .
Step 2.5.4.2.1.2
One to any power is one.
Step 2.5.4.2.1.3
Raise to the power of .
Step 2.5.5
Solve for .
Tap for more steps...
Step 2.5.5.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 2.5.5.1.1
Subtract from both sides of the equation.
Step 2.5.5.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.5.5.1.3
Combine and .
Step 2.5.5.1.4
Combine the numerators over the common denominator.
Step 2.5.5.1.5
Simplify the numerator.
Tap for more steps...
Step 2.5.5.1.5.1
Multiply by .
Step 2.5.5.1.5.2
Subtract from .
Step 2.5.5.1.6
Move the negative in front of the fraction.
Step 2.5.5.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.5.2.1
Divide each term in by .
Step 2.5.5.2.2
Simplify the left side.
Tap for more steps...
Step 2.5.5.2.2.1
Dividing two negative values results in a positive value.
Step 2.5.5.2.2.2
Divide by .
Step 2.5.5.2.3
Simplify the right side.
Tap for more steps...
Step 2.5.5.2.3.1
Dividing two negative values results in a positive value.
Step 2.5.5.2.3.2
Divide by .
Step 3
Find the values where the derivative is undefined.
Tap for more steps...
Step 3.1
Convert expressions with fractional exponents to radicals.
Tap for more steps...
Step 3.1.1
Apply the rule to rewrite the exponentiation as a radical.
Step 3.1.2
Anything raised to is the base itself.
Step 3.2
Set the denominator in equal to to find where the expression is undefined.
Step 3.3
Solve for .
Tap for more steps...
Step 3.3.1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3.3.2
Simplify each side of the equation.
Tap for more steps...
Step 3.3.2.1
Use to rewrite as .
Step 3.3.2.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.2.1
Simplify .
Tap for more steps...
Step 3.3.2.2.1.1
Apply the product rule to .
Step 3.3.2.2.1.2
Raise to the power of .
Step 3.3.2.2.1.3
Multiply the exponents in .
Tap for more steps...
Step 3.3.2.2.1.3.1
Apply the power rule and multiply exponents, .
Step 3.3.2.2.1.3.2
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.2.1.3.2.1
Cancel the common factor.
Step 3.3.2.2.1.3.2.2
Rewrite the expression.
Step 3.3.2.2.1.4
Simplify.
Step 3.3.2.2.1.5
Apply the distributive property.
Step 3.3.2.2.1.6
Multiply.
Tap for more steps...
Step 3.3.2.2.1.6.1
Multiply by .
Step 3.3.2.2.1.6.2
Multiply by .
Step 3.3.2.3
Simplify the right side.
Tap for more steps...
Step 3.3.2.3.1
Raising to any positive power yields .
Step 3.3.3
Solve for .
Tap for more steps...
Step 3.3.3.1
Subtract from both sides of the equation.
Step 3.3.3.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.3.3.2.1
Divide each term in by .
Step 3.3.3.2.2
Simplify the left side.
Tap for more steps...
Step 3.3.3.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.3.3.2.2.1.1
Cancel the common factor.
Step 3.3.3.2.2.1.2
Divide by .
Step 3.3.3.2.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.2.3.1
Divide by .
Step 3.4
Set the radicand in less than to find where the expression is undefined.
Step 3.5
Solve for .
Tap for more steps...
Step 3.5.1
Subtract from both sides of the inequality.
Step 3.5.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.5.2.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 3.5.2.2
Simplify the left side.
Tap for more steps...
Step 3.5.2.2.1
Dividing two negative values results in a positive value.
Step 3.5.2.2.2
Divide by .
Step 3.5.2.3
Simplify the right side.
Tap for more steps...
Step 3.5.2.3.1
Divide by .
Step 3.6
The equation is undefined where the denominator equals , the argument of a square root is less than , or the argument of a logarithm is less than or equal to .
Step 4
Evaluate at each value where the derivative is or undefined.
Tap for more steps...
Step 4.1
Evaluate at .
Tap for more steps...
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Tap for more steps...
Step 4.1.2.1
Simplify each term.
Tap for more steps...
Step 4.1.2.1.1
Write as a fraction with a common denominator.
Step 4.1.2.1.2
Combine the numerators over the common denominator.
Step 4.1.2.1.3
Subtract from .
Step 4.1.2.1.4
Rewrite as .
Step 4.1.2.1.5
Any root of is .
Step 4.1.2.1.6
Simplify the denominator.
Tap for more steps...
Step 4.1.2.1.6.1
Rewrite as .
Step 4.1.2.1.6.2
Pull terms out from under the radical, assuming positive real numbers.
Step 4.1.2.2
To write as a fraction with a common denominator, multiply by .
Step 4.1.2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 4.1.2.3.1
Multiply by .
Step 4.1.2.3.2
Multiply by .
Step 4.1.2.4
Combine the numerators over the common denominator.
Step 4.1.2.5
Add and .
Step 4.2
Evaluate at .
Tap for more steps...
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Tap for more steps...
Step 4.2.2.1
Simplify each term.
Tap for more steps...
Step 4.2.2.1.1
Multiply by .
Step 4.2.2.1.2
Subtract from .
Step 4.2.2.1.3
Rewrite as .
Step 4.2.2.1.4
Pull terms out from under the radical, assuming positive real numbers.
Step 4.2.2.2
Add and .
Step 4.3
List all of the points.
Step 5