Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2
Differentiate using the Quotient Rule which states that is where and .
Step 1.1.3
Differentiate.
Step 1.1.3.1
Differentiate using the Power Rule which states that is where .
Step 1.1.3.2
Multiply by .
Step 1.1.3.3
By the Sum Rule, the derivative of with respect to is .
Step 1.1.3.4
Differentiate using the Power Rule which states that is where .
Step 1.1.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.6
Simplify the expression.
Step 1.1.3.6.1
Add and .
Step 1.1.3.6.2
Multiply by .
Step 1.1.4
Raise to the power of .
Step 1.1.5
Raise to the power of .
Step 1.1.6
Use the power rule to combine exponents.
Step 1.1.7
Add and .
Step 1.1.8
Subtract from .
Step 1.1.9
Combine and .
Step 1.1.10
Simplify.
Step 1.1.10.1
Apply the distributive property.
Step 1.1.10.2
Simplify each term.
Step 1.1.10.2.1
Multiply by .
Step 1.1.10.2.2
Multiply by .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Set the numerator equal to zero.
Step 2.3
Solve the equation for .
Step 2.3.1
Add to both sides of the equation.
Step 2.3.2
Divide each term in by and simplify.
Step 2.3.2.1
Divide each term in by .
Step 2.3.2.2
Simplify the left side.
Step 2.3.2.2.1
Cancel the common factor of .
Step 2.3.2.2.1.1
Cancel the common factor.
Step 2.3.2.2.1.2
Divide by .
Step 2.3.2.3
Simplify the right side.
Step 2.3.2.3.1
Divide by .
Step 2.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.3.4
Simplify .
Step 2.3.4.1
Rewrite as .
Step 2.3.4.2
Rewrite as .
Step 2.3.4.3
Rewrite as .
Step 2.3.4.4
Rewrite as .
Step 2.3.4.5
Pull terms out from under the radical, assuming positive real numbers.
Step 2.3.4.6
Move to the left of .
Step 2.3.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.3.5.1
First, use the positive value of the to find the first solution.
Step 2.3.5.2
Next, use the negative value of the to find the second solution.
Step 2.3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 3
There are no values of in the domain of the original problem where the derivative is or undefined.
No critical points found
Step 4
Step 4.1
Set the denominator in equal to to find where the expression is undefined.
Step 4.2
Solve for .
Step 4.2.1
Factor the left side of the equation.
Step 4.2.1.1
Rewrite as .
Step 4.2.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 4.2.1.3
Apply the product rule to .
Step 4.2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.2.3
Set equal to and solve for .
Step 4.2.3.1
Set equal to .
Step 4.2.3.2
Solve for .
Step 4.2.3.2.1
Set the equal to .
Step 4.2.3.2.2
Subtract from both sides of the equation.
Step 4.2.4
Set equal to and solve for .
Step 4.2.4.1
Set equal to .
Step 4.2.4.2
Solve for .
Step 4.2.4.2.1
Set the equal to .
Step 4.2.4.2.2
Add to both sides of the equation.
Step 4.2.5
The final solution is all the values that make true.
Step 4.3
The equation is undefined where the denominator equals , the argument of a square root is less than , or the argument of a logarithm is less than or equal to .
Step 5
Split into separate intervals around the values that make the derivative or undefined.
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Simplify the numerator.
Step 6.2.1.1
Raise to the power of .
Step 6.2.1.2
Multiply by .
Step 6.2.1.3
Subtract from .
Step 6.2.2
Simplify the denominator.
Step 6.2.2.1
Raise to the power of .
Step 6.2.2.2
Subtract from .
Step 6.2.2.3
Raise to the power of .
Step 6.2.3
Move the negative in front of the fraction.
Step 6.2.4
The final answer is .
Step 6.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 7
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Step 7.2.1
Simplify the numerator.
Step 7.2.1.1
Raising to any positive power yields .
Step 7.2.1.2
Multiply by .
Step 7.2.1.3
Subtract from .
Step 7.2.2
Simplify the denominator.
Step 7.2.2.1
Raising to any positive power yields .
Step 7.2.2.2
Subtract from .
Step 7.2.2.3
Raise to the power of .
Step 7.2.3
Reduce the expression by cancelling the common factors.
Step 7.2.3.1
Cancel the common factor of and .
Step 7.2.3.1.1
Factor out of .
Step 7.2.3.1.2
Cancel the common factors.
Step 7.2.3.1.2.1
Factor out of .
Step 7.2.3.1.2.2
Cancel the common factor.
Step 7.2.3.1.2.3
Rewrite the expression.
Step 7.2.3.2
Move the negative in front of the fraction.
Step 7.2.4
The final answer is .
Step 7.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 8
Step 8.1
Replace the variable with in the expression.
Step 8.2
Simplify the result.
Step 8.2.1
Simplify the numerator.
Step 8.2.1.1
Raise to the power of .
Step 8.2.1.2
Multiply by .
Step 8.2.1.3
Subtract from .
Step 8.2.2
Simplify the denominator.
Step 8.2.2.1
Raise to the power of .
Step 8.2.2.2
Subtract from .
Step 8.2.2.3
Raise to the power of .
Step 8.2.3
Move the negative in front of the fraction.
Step 8.2.4
The final answer is .
Step 8.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 9
List the intervals on which the function is increasing and decreasing.
Decreasing on:
Step 10