Calculus Examples

Find Where Increasing/Decreasing Using Derivatives f(x)=4-|x|
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Differentiate.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2
Evaluate .
Tap for more steps...
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
The derivative of with respect to is .
Step 1.1.3
Subtract from .
Step 1.2
The first derivative of with respect to is .
Step 2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the first derivative equal to .
Step 2.2
Set the numerator equal to zero.
Step 2.3
Exclude the solutions that do not make true.
Step 3
There are no values of in the domain of the original problem where the derivative is or undefined.
No critical points found
Step 4
Find where the derivative is undefined.
Tap for more steps...
Step 4.1
Set the denominator in equal to to find where the expression is undefined.
Step 4.2
Solve for .
Tap for more steps...
Step 4.2.1
Remove the absolute value term. This creates a on the right side of the equation because .
Step 4.2.2
Plus or minus is .
Step 5
After finding the point that makes the derivative equal to or undefined, the interval to check where is increasing and where it is decreasing is .
Step 6
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
The absolute value is the distance between a number and zero. The distance between and is .
Step 6.2.2
Divide by .
Step 6.2.3
The final answer is .
Step 6.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 7
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Tap for more steps...
Step 7.2.1
The absolute value is the distance between a number and zero. The distance between and is .
Step 7.2.2
Cancel the common factor of .
Tap for more steps...
Step 7.2.2.1
Cancel the common factor.
Step 7.2.2.2
Rewrite the expression.
Step 7.2.3
Multiply by .
Step 7.2.4
The final answer is .
Step 7.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 8
List the intervals on which the function is increasing and decreasing.
Increasing on:
Decreasing on:
Step 9