Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Rewrite as .
Step 1.1.2
Expand using the FOIL Method.
Step 1.1.2.1
Apply the distributive property.
Step 1.1.2.2
Apply the distributive property.
Step 1.1.2.3
Apply the distributive property.
Step 1.1.3
Simplify and combine like terms.
Step 1.1.3.1
Simplify each term.
Step 1.1.3.1.1
Rewrite using the commutative property of multiplication.
Step 1.1.3.1.2
Multiply by by adding the exponents.
Step 1.1.3.1.2.1
Move .
Step 1.1.3.1.2.2
Multiply by .
Step 1.1.3.1.3
Multiply by .
Step 1.1.3.1.4
Multiply by .
Step 1.1.3.1.5
Multiply by .
Step 1.1.3.1.6
Multiply by .
Step 1.1.3.2
Subtract from .
Step 1.1.4
Differentiate using the Product Rule which states that is where and .
Step 1.1.5
Differentiate.
Step 1.1.5.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.5.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5.3
Differentiate using the Power Rule which states that is where .
Step 1.1.5.4
Multiply by .
Step 1.1.5.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5.6
Differentiate using the Power Rule which states that is where .
Step 1.1.5.7
Multiply by .
Step 1.1.5.8
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5.9
Add and .
Step 1.1.5.10
Differentiate using the Power Rule which states that is where .
Step 1.1.5.11
Multiply by .
Step 1.1.6
Simplify.
Step 1.1.6.1
Apply the distributive property.
Step 1.1.6.2
Combine terms.
Step 1.1.6.2.1
Raise to the power of .
Step 1.1.6.2.2
Raise to the power of .
Step 1.1.6.2.3
Use the power rule to combine exponents.
Step 1.1.6.2.4
Add and .
Step 1.1.6.2.5
Move to the left of .
Step 1.1.6.2.6
Add and .
Step 1.1.6.2.7
Subtract from .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Factor the left side of the equation.
Step 2.2.1
Factor out of .
Step 2.2.1.1
Factor out of .
Step 2.2.1.2
Factor out of .
Step 2.2.1.3
Factor out of .
Step 2.2.1.4
Factor out of .
Step 2.2.1.5
Factor out of .
Step 2.2.2
Factor.
Step 2.2.2.1
Factor by grouping.
Step 2.2.2.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 2.2.2.1.1.1
Factor out of .
Step 2.2.2.1.1.2
Rewrite as plus
Step 2.2.2.1.1.3
Apply the distributive property.
Step 2.2.2.1.2
Factor out the greatest common factor from each group.
Step 2.2.2.1.2.1
Group the first two terms and the last two terms.
Step 2.2.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 2.2.2.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 2.2.2.2
Remove unnecessary parentheses.
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to and solve for .
Step 2.4.1
Set equal to .
Step 2.4.2
Solve for .
Step 2.4.2.1
Add to both sides of the equation.
Step 2.4.2.2
Divide each term in by and simplify.
Step 2.4.2.2.1
Divide each term in by .
Step 2.4.2.2.2
Simplify the left side.
Step 2.4.2.2.2.1
Cancel the common factor of .
Step 2.4.2.2.2.1.1
Cancel the common factor.
Step 2.4.2.2.2.1.2
Divide by .
Step 2.5
Set equal to and solve for .
Step 2.5.1
Set equal to .
Step 2.5.2
Solve for .
Step 2.5.2.1
Add to both sides of the equation.
Step 2.5.2.2
Divide each term in by and simplify.
Step 2.5.2.2.1
Divide each term in by .
Step 2.5.2.2.2
Simplify the left side.
Step 2.5.2.2.2.1
Cancel the common factor of .
Step 2.5.2.2.2.1.1
Cancel the common factor.
Step 2.5.2.2.2.1.2
Divide by .
Step 2.6
The final solution is all the values that make true.
Step 3
The values which make the derivative equal to are .
Step 4
Split into separate intervals around the values that make the derivative or undefined.
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Raise to the power of .
Step 5.2.1.2
Multiply by .
Step 5.2.1.3
Multiply by .
Step 5.2.2
Simplify by adding numbers.
Step 5.2.2.1
Add and .
Step 5.2.2.2
Add and .
Step 5.2.3
The final answer is .
Step 5.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
One to any power is one.
Step 6.2.1.2
Multiply by .
Step 6.2.1.3
Multiply by .
Step 6.2.2
Simplify by adding and subtracting.
Step 6.2.2.1
Subtract from .
Step 6.2.2.2
Add and .
Step 6.2.3
The final answer is .
Step 6.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 7
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Step 7.2.1
Simplify each term.
Step 7.2.1.1
Raise to the power of .
Step 7.2.1.2
Multiply by .
Step 7.2.1.3
Multiply by .
Step 7.2.2
Simplify by adding and subtracting.
Step 7.2.2.1
Subtract from .
Step 7.2.2.2
Add and .
Step 7.2.3
The final answer is .
Step 7.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 8
List the intervals on which the function is increasing and decreasing.
Increasing on:
Decreasing on:
Step 9