Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Differentiate using the Quotient Rule which states that is where and .
Step 1.1.2
Differentiate.
Step 1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.4
Simplify the expression.
Step 1.1.2.4.1
Add and .
Step 1.1.2.4.2
Multiply by .
Step 1.1.2.5
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.6
Differentiate using the Power Rule which states that is where .
Step 1.1.2.7
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.8
Simplify the expression.
Step 1.1.2.8.1
Add and .
Step 1.1.2.8.2
Multiply by .
Step 1.1.3
Simplify.
Step 1.1.3.1
Apply the distributive property.
Step 1.1.3.2
Apply the distributive property.
Step 1.1.3.3
Simplify the numerator.
Step 1.1.3.3.1
Simplify each term.
Step 1.1.3.3.1.1
Multiply by by adding the exponents.
Step 1.1.3.3.1.1.1
Move .
Step 1.1.3.3.1.1.2
Multiply by .
Step 1.1.3.3.1.2
Multiply by .
Step 1.1.3.3.2
Subtract from .
Step 1.1.3.4
Reorder terms.
Step 1.1.3.5
Factor by grouping.
Step 1.1.3.5.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 1.1.3.5.1.1
Factor out of .
Step 1.1.3.5.1.2
Rewrite as plus
Step 1.1.3.5.1.3
Apply the distributive property.
Step 1.1.3.5.2
Factor out the greatest common factor from each group.
Step 1.1.3.5.2.1
Group the first two terms and the last two terms.
Step 1.1.3.5.2.2
Factor out the greatest common factor (GCF) from each group.
Step 1.1.3.5.3
Factor the polynomial by factoring out the greatest common factor, .
Step 1.1.3.6
Factor out of .
Step 1.1.3.7
Rewrite as .
Step 1.1.3.8
Factor out of .
Step 1.1.3.9
Rewrite as .
Step 1.1.3.10
Move the negative in front of the fraction.
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Set the numerator equal to zero.
Step 2.3
Solve the equation for .
Step 2.3.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3.2
Set equal to and solve for .
Step 2.3.2.1
Set equal to .
Step 2.3.2.2
Subtract from both sides of the equation.
Step 2.3.3
Set equal to and solve for .
Step 2.3.3.1
Set equal to .
Step 2.3.3.2
Add to both sides of the equation.
Step 2.3.4
The final solution is all the values that make true.
Step 3
The values which make the derivative equal to are .
Step 4
Split into separate intervals around the values that make the derivative or undefined.
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
Simplify the numerator.
Step 5.2.1.1
Add and .
Step 5.2.1.2
Subtract from .
Step 5.2.2
Simplify the denominator.
Step 5.2.2.1
Raise to the power of .
Step 5.2.2.2
Add and .
Step 5.2.2.3
Raise to the power of .
Step 5.2.3
Multiply by .
Step 5.2.4
The final answer is .
Step 5.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Simplify the numerator.
Step 6.2.1.1
Add and .
Step 6.2.1.2
Subtract from .
Step 6.2.2
Simplify the denominator.
Step 6.2.2.1
One to any power is one.
Step 6.2.2.2
Add and .
Step 6.2.2.3
Raise to the power of .
Step 6.2.3
Reduce the expression by cancelling the common factors.
Step 6.2.3.1
Multiply by .
Step 6.2.3.2
Cancel the common factor of and .
Step 6.2.3.2.1
Factor out of .
Step 6.2.3.2.2
Cancel the common factors.
Step 6.2.3.2.2.1
Factor out of .
Step 6.2.3.2.2.2
Cancel the common factor.
Step 6.2.3.2.2.3
Rewrite the expression.
Step 6.2.3.3
Move the negative in front of the fraction.
Step 6.2.4
The final answer is .
Step 6.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 7
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Step 7.2.1
Simplify the numerator.
Step 7.2.1.1
Add and .
Step 7.2.1.2
Subtract from .
Step 7.2.2
Simplify the denominator.
Step 7.2.2.1
Raise to the power of .
Step 7.2.2.2
Add and .
Step 7.2.2.3
Raise to the power of .
Step 7.2.3
Multiply by .
Step 7.2.4
The final answer is .
Step 7.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 8
List the intervals on which the function is increasing and decreasing.
Increasing on:
Decreasing on:
Step 9