Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Differentiate using the Quotient Rule which states that is where and .
Step 1.1.2
Differentiate.
Step 1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.4
Simplify the expression.
Step 1.1.2.4.1
Add and .
Step 1.1.2.4.2
Multiply by .
Step 1.1.2.5
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.6
Differentiate using the Power Rule which states that is where .
Step 1.1.2.7
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.8
Simplify the expression.
Step 1.1.2.8.1
Add and .
Step 1.1.2.8.2
Multiply by .
Step 1.1.3
Simplify.
Step 1.1.3.1
Apply the distributive property.
Step 1.1.3.2
Apply the distributive property.
Step 1.1.3.3
Simplify the numerator.
Step 1.1.3.3.1
Simplify each term.
Step 1.1.3.3.1.1
Multiply by by adding the exponents.
Step 1.1.3.3.1.1.1
Move .
Step 1.1.3.3.1.1.2
Multiply by .
Step 1.1.3.3.1.2
Multiply by .
Step 1.1.3.3.2
Subtract from .
Step 1.1.3.4
Reorder terms.
Step 1.1.3.5
Factor out of .
Step 1.1.3.6
Factor out of .
Step 1.1.3.7
Factor out of .
Step 1.1.3.8
Rewrite as .
Step 1.1.3.9
Factor out of .
Step 1.1.3.10
Rewrite as .
Step 1.1.3.11
Move the negative in front of the fraction.
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Set the numerator equal to zero.
Step 2.3
Solve the equation for .
Step 2.3.1
Use the quadratic formula to find the solutions.
Step 2.3.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.3.3
Simplify.
Step 2.3.3.1
Simplify the numerator.
Step 2.3.3.1.1
Raise to the power of .
Step 2.3.3.1.2
Multiply .
Step 2.3.3.1.2.1
Multiply by .
Step 2.3.3.1.2.2
Multiply by .
Step 2.3.3.1.3
Add and .
Step 2.3.3.1.4
Rewrite as .
Step 2.3.3.1.4.1
Factor out of .
Step 2.3.3.1.4.2
Rewrite as .
Step 2.3.3.1.5
Pull terms out from under the radical.
Step 2.3.3.2
Multiply by .
Step 2.3.3.3
Simplify .
Step 2.3.4
Simplify the expression to solve for the portion of the .
Step 2.3.4.1
Simplify the numerator.
Step 2.3.4.1.1
Raise to the power of .
Step 2.3.4.1.2
Multiply .
Step 2.3.4.1.2.1
Multiply by .
Step 2.3.4.1.2.2
Multiply by .
Step 2.3.4.1.3
Add and .
Step 2.3.4.1.4
Rewrite as .
Step 2.3.4.1.4.1
Factor out of .
Step 2.3.4.1.4.2
Rewrite as .
Step 2.3.4.1.5
Pull terms out from under the radical.
Step 2.3.4.2
Multiply by .
Step 2.3.4.3
Simplify .
Step 2.3.4.4
Change the to .
Step 2.3.5
Simplify the expression to solve for the portion of the .
Step 2.3.5.1
Simplify the numerator.
Step 2.3.5.1.1
Raise to the power of .
Step 2.3.5.1.2
Multiply .
Step 2.3.5.1.2.1
Multiply by .
Step 2.3.5.1.2.2
Multiply by .
Step 2.3.5.1.3
Add and .
Step 2.3.5.1.4
Rewrite as .
Step 2.3.5.1.4.1
Factor out of .
Step 2.3.5.1.4.2
Rewrite as .
Step 2.3.5.1.5
Pull terms out from under the radical.
Step 2.3.5.2
Multiply by .
Step 2.3.5.3
Simplify .
Step 2.3.5.4
Change the to .
Step 2.3.6
The final answer is the combination of both solutions.
Step 3
The values which make the derivative equal to are .
Step 4
Split into separate intervals around the values that make the derivative or undefined.
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
Simplify the numerator.
Step 5.2.1.1
Raise to the power of .
Step 5.2.1.2
Multiply by .
Step 5.2.1.3
Add and .
Step 5.2.1.4
Subtract from .
Step 5.2.2
Simplify the denominator.
Step 5.2.2.1
Raise to the power of .
Step 5.2.2.2
Add and .
Step 5.2.2.3
Raise to the power of .
Step 5.2.3
Simplify the expression.
Step 5.2.3.1
Divide by .
Step 5.2.3.2
Multiply by .
Step 5.2.4
The final answer is .
Step 5.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Simplify the numerator.
Step 6.2.1.1
Raise to the power of .
Step 6.2.1.2
Multiply by .
Step 6.2.1.3
Subtract from .
Step 6.2.1.4
Subtract from .
Step 6.2.2
Simplify the denominator.
Step 6.2.2.1
Raise to the power of .
Step 6.2.2.2
Add and .
Step 6.2.2.3
Raise to the power of .
Step 6.2.3
Simplify the expression.
Step 6.2.3.1
Divide by .
Step 6.2.3.2
Multiply by .
Step 6.2.4
The final answer is .
Step 6.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 7
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Step 7.2.1
Simplify the numerator.
Step 7.2.1.1
Raise to the power of .
Step 7.2.1.2
Multiply by .
Step 7.2.1.3
Subtract from .
Step 7.2.1.4
Subtract from .
Step 7.2.2
Simplify the denominator.
Step 7.2.2.1
Raise to the power of .
Step 7.2.2.2
Add and .
Step 7.2.2.3
Raise to the power of .
Step 7.2.3
Simplify the expression.
Step 7.2.3.1
Divide by .
Step 7.2.3.2
Multiply by .
Step 7.2.4
The final answer is .
Step 7.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 8
List the intervals on which the function is increasing and decreasing.
Increasing on:
Decreasing on:
Step 9