Calculus Examples

Find Where Increasing/Decreasing Using Derivatives f(x)=(x-1)/(x^2+1)
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Differentiate using the Quotient Rule which states that is where and .
Step 1.1.2
Differentiate.
Tap for more steps...
Step 1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.4
Simplify the expression.
Tap for more steps...
Step 1.1.2.4.1
Add and .
Step 1.1.2.4.2
Multiply by .
Step 1.1.2.5
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.6
Differentiate using the Power Rule which states that is where .
Step 1.1.2.7
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.8
Simplify the expression.
Tap for more steps...
Step 1.1.2.8.1
Add and .
Step 1.1.2.8.2
Multiply by .
Step 1.1.3
Simplify.
Tap for more steps...
Step 1.1.3.1
Apply the distributive property.
Step 1.1.3.2
Apply the distributive property.
Step 1.1.3.3
Simplify the numerator.
Tap for more steps...
Step 1.1.3.3.1
Simplify each term.
Tap for more steps...
Step 1.1.3.3.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.3.3.1.1.1
Move .
Step 1.1.3.3.1.1.2
Multiply by .
Step 1.1.3.3.1.2
Multiply by .
Step 1.1.3.3.2
Subtract from .
Step 1.1.3.4
Reorder terms.
Step 1.1.3.5
Factor out of .
Step 1.1.3.6
Factor out of .
Step 1.1.3.7
Factor out of .
Step 1.1.3.8
Rewrite as .
Step 1.1.3.9
Factor out of .
Step 1.1.3.10
Rewrite as .
Step 1.1.3.11
Move the negative in front of the fraction.
Step 1.2
The first derivative of with respect to is .
Step 2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the first derivative equal to .
Step 2.2
Set the numerator equal to zero.
Step 2.3
Solve the equation for .
Tap for more steps...
Step 2.3.1
Use the quadratic formula to find the solutions.
Step 2.3.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.3.3
Simplify.
Tap for more steps...
Step 2.3.3.1
Simplify the numerator.
Tap for more steps...
Step 2.3.3.1.1
Raise to the power of .
Step 2.3.3.1.2
Multiply .
Tap for more steps...
Step 2.3.3.1.2.1
Multiply by .
Step 2.3.3.1.2.2
Multiply by .
Step 2.3.3.1.3
Add and .
Step 2.3.3.1.4
Rewrite as .
Tap for more steps...
Step 2.3.3.1.4.1
Factor out of .
Step 2.3.3.1.4.2
Rewrite as .
Step 2.3.3.1.5
Pull terms out from under the radical.
Step 2.3.3.2
Multiply by .
Step 2.3.3.3
Simplify .
Step 2.3.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.3.4.1
Simplify the numerator.
Tap for more steps...
Step 2.3.4.1.1
Raise to the power of .
Step 2.3.4.1.2
Multiply .
Tap for more steps...
Step 2.3.4.1.2.1
Multiply by .
Step 2.3.4.1.2.2
Multiply by .
Step 2.3.4.1.3
Add and .
Step 2.3.4.1.4
Rewrite as .
Tap for more steps...
Step 2.3.4.1.4.1
Factor out of .
Step 2.3.4.1.4.2
Rewrite as .
Step 2.3.4.1.5
Pull terms out from under the radical.
Step 2.3.4.2
Multiply by .
Step 2.3.4.3
Simplify .
Step 2.3.4.4
Change the to .
Step 2.3.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.3.5.1
Simplify the numerator.
Tap for more steps...
Step 2.3.5.1.1
Raise to the power of .
Step 2.3.5.1.2
Multiply .
Tap for more steps...
Step 2.3.5.1.2.1
Multiply by .
Step 2.3.5.1.2.2
Multiply by .
Step 2.3.5.1.3
Add and .
Step 2.3.5.1.4
Rewrite as .
Tap for more steps...
Step 2.3.5.1.4.1
Factor out of .
Step 2.3.5.1.4.2
Rewrite as .
Step 2.3.5.1.5
Pull terms out from under the radical.
Step 2.3.5.2
Multiply by .
Step 2.3.5.3
Simplify .
Step 2.3.5.4
Change the to .
Step 2.3.6
The final answer is the combination of both solutions.
Step 3
The values which make the derivative equal to are .
Step 4
Split into separate intervals around the values that make the derivative or undefined.
Step 5
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Simplify the numerator.
Tap for more steps...
Step 5.2.1.1
Raise to the power of .
Step 5.2.1.2
Multiply by .
Step 5.2.1.3
Add and .
Step 5.2.1.4
Subtract from .
Step 5.2.2
Simplify the denominator.
Tap for more steps...
Step 5.2.2.1
Raise to the power of .
Step 5.2.2.2
Add and .
Step 5.2.2.3
Raise to the power of .
Step 5.2.3
Simplify the expression.
Tap for more steps...
Step 5.2.3.1
Divide by .
Step 5.2.3.2
Multiply by .
Step 5.2.4
The final answer is .
Step 5.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 6
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Simplify the numerator.
Tap for more steps...
Step 6.2.1.1
Raise to the power of .
Step 6.2.1.2
Multiply by .
Step 6.2.1.3
Subtract from .
Step 6.2.1.4
Subtract from .
Step 6.2.2
Simplify the denominator.
Tap for more steps...
Step 6.2.2.1
Raise to the power of .
Step 6.2.2.2
Add and .
Step 6.2.2.3
Raise to the power of .
Step 6.2.3
Simplify the expression.
Tap for more steps...
Step 6.2.3.1
Divide by .
Step 6.2.3.2
Multiply by .
Step 6.2.4
The final answer is .
Step 6.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 7
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Tap for more steps...
Step 7.2.1
Simplify the numerator.
Tap for more steps...
Step 7.2.1.1
Raise to the power of .
Step 7.2.1.2
Multiply by .
Step 7.2.1.3
Subtract from .
Step 7.2.1.4
Subtract from .
Step 7.2.2
Simplify the denominator.
Tap for more steps...
Step 7.2.2.1
Raise to the power of .
Step 7.2.2.2
Add and .
Step 7.2.2.3
Raise to the power of .
Step 7.2.3
Simplify the expression.
Tap for more steps...
Step 7.2.3.1
Divide by .
Step 7.2.3.2
Multiply by .
Step 7.2.4
The final answer is .
Step 7.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 8
List the intervals on which the function is increasing and decreasing.
Increasing on:
Decreasing on:
Step 9