Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=1/3x^3-4x , [-8,8]
,
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2
Evaluate .
Tap for more steps...
Step 1.1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2.3
Combine and .
Step 1.1.1.2.4
Combine and .
Step 1.1.1.2.5
Cancel the common factor of .
Tap for more steps...
Step 1.1.1.2.5.1
Cancel the common factor.
Step 1.1.1.2.5.2
Divide by .
Step 1.1.1.3
Evaluate .
Tap for more steps...
Step 1.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.3.3
Multiply by .
Step 1.1.2
The first derivative of with respect to is .
Step 1.2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 1.2.1
Set the first derivative equal to .
Step 1.2.2
Add to both sides of the equation.
Step 1.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 1.2.4
Simplify .
Tap for more steps...
Step 1.2.4.1
Rewrite as .
Step 1.2.4.2
Pull terms out from under the radical, assuming positive real numbers.
Step 1.2.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.2.5.1
First, use the positive value of the to find the first solution.
Step 1.2.5.2
Next, use the negative value of the to find the second solution.
Step 1.2.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate at each value where the derivative is or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at .
Tap for more steps...
Step 1.4.1.1
Substitute for .
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.1
Raise to the power of .
Step 1.4.1.2.1.2
Combine and .
Step 1.4.1.2.1.3
Multiply by .
Step 1.4.1.2.2
To write as a fraction with a common denominator, multiply by .
Step 1.4.1.2.3
Combine and .
Step 1.4.1.2.4
Combine the numerators over the common denominator.
Step 1.4.1.2.5
Simplify the numerator.
Tap for more steps...
Step 1.4.1.2.5.1
Multiply by .
Step 1.4.1.2.5.2
Subtract from .
Step 1.4.1.2.6
Move the negative in front of the fraction.
Step 1.4.2
Evaluate at .
Tap for more steps...
Step 1.4.2.1
Substitute for .
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.1
Raise to the power of .
Step 1.4.2.2.1.2
Combine and .
Step 1.4.2.2.1.3
Move the negative in front of the fraction.
Step 1.4.2.2.1.4
Multiply by .
Step 1.4.2.2.2
To write as a fraction with a common denominator, multiply by .
Step 1.4.2.2.3
Combine and .
Step 1.4.2.2.4
Combine the numerators over the common denominator.
Step 1.4.2.2.5
Simplify the numerator.
Tap for more steps...
Step 1.4.2.2.5.1
Multiply by .
Step 1.4.2.2.5.2
Add and .
Step 1.4.3
List all of the points.
Step 2
Evaluate at the included endpoints.
Tap for more steps...
Step 2.1
Evaluate at .
Tap for more steps...
Step 2.1.1
Substitute for .
Step 2.1.2
Simplify.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Raise to the power of .
Step 2.1.2.1.2
Combine and .
Step 2.1.2.1.3
Move the negative in front of the fraction.
Step 2.1.2.1.4
Multiply by .
Step 2.1.2.2
To write as a fraction with a common denominator, multiply by .
Step 2.1.2.3
Combine and .
Step 2.1.2.4
Combine the numerators over the common denominator.
Step 2.1.2.5
Simplify the numerator.
Tap for more steps...
Step 2.1.2.5.1
Multiply by .
Step 2.1.2.5.2
Add and .
Step 2.1.2.6
Move the negative in front of the fraction.
Step 2.2
Evaluate at .
Tap for more steps...
Step 2.2.1
Substitute for .
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Raise to the power of .
Step 2.2.2.1.2
Combine and .
Step 2.2.2.1.3
Multiply by .
Step 2.2.2.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.2.3
Combine and .
Step 2.2.2.4
Combine the numerators over the common denominator.
Step 2.2.2.5
Simplify the numerator.
Tap for more steps...
Step 2.2.2.5.1
Multiply by .
Step 2.2.2.5.2
Subtract from .
Step 2.3
List all of the points.
Step 3
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
Absolute Maximum:
Absolute Minimum:
Step 4