Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=9x^2-3/2x^3 , [0,6]
,
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2
Evaluate .
Tap for more steps...
Step 1.1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2.3
Multiply by .
Step 1.1.1.3
Evaluate .
Tap for more steps...
Step 1.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.3.3
Multiply by .
Step 1.1.1.3.4
Combine and .
Step 1.1.1.3.5
Multiply by .
Step 1.1.1.3.6
Combine and .
Step 1.1.1.3.7
Move the negative in front of the fraction.
Step 1.1.1.4
Reorder terms.
Step 1.1.2
The first derivative of with respect to is .
Step 1.2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 1.2.1
Set the first derivative equal to .
Step 1.2.2
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 1.2.2.1
Multiply each term in by .
Step 1.2.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.2.1
Simplify each term.
Tap for more steps...
Step 1.2.2.2.1.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.2.2.1.1.1
Move the leading negative in into the numerator.
Step 1.2.2.2.1.1.2
Cancel the common factor.
Step 1.2.2.2.1.1.3
Rewrite the expression.
Step 1.2.2.2.1.2
Multiply by .
Step 1.2.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.2.3.1
Multiply by .
Step 1.2.3
Factor out of .
Tap for more steps...
Step 1.2.3.1
Factor out of .
Step 1.2.3.2
Factor out of .
Step 1.2.3.3
Factor out of .
Step 1.2.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 1.2.5
Set equal to .
Step 1.2.6
Set equal to and solve for .
Tap for more steps...
Step 1.2.6.1
Set equal to .
Step 1.2.6.2
Add to both sides of the equation.
Step 1.2.7
The final solution is all the values that make true.
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate at each value where the derivative is or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at .
Tap for more steps...
Step 1.4.1.1
Substitute for .
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.1
Raising to any positive power yields .
Step 1.4.1.2.1.2
Multiply by .
Step 1.4.1.2.1.3
Raising to any positive power yields .
Step 1.4.1.2.1.4
Multiply .
Tap for more steps...
Step 1.4.1.2.1.4.1
Multiply by .
Step 1.4.1.2.1.4.2
Multiply by .
Step 1.4.1.2.2
Add and .
Step 1.4.2
Evaluate at .
Tap for more steps...
Step 1.4.2.1
Substitute for .
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.1
Raise to the power of .
Step 1.4.2.2.1.2
Multiply by .
Step 1.4.2.2.1.3
Raise to the power of .
Step 1.4.2.2.1.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.2.2.1.4.1
Move the leading negative in into the numerator.
Step 1.4.2.2.1.4.2
Factor out of .
Step 1.4.2.2.1.4.3
Cancel the common factor.
Step 1.4.2.2.1.4.4
Rewrite the expression.
Step 1.4.2.2.1.5
Multiply by .
Step 1.4.2.2.2
Subtract from .
Step 1.4.3
List all of the points.
Step 2
Evaluate at the included endpoints.
Tap for more steps...
Step 2.1
Evaluate at .
Tap for more steps...
Step 2.1.1
Substitute for .
Step 2.1.2
Simplify.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Raising to any positive power yields .
Step 2.1.2.1.2
Multiply by .
Step 2.1.2.1.3
Raising to any positive power yields .
Step 2.1.2.1.4
Multiply .
Tap for more steps...
Step 2.1.2.1.4.1
Multiply by .
Step 2.1.2.1.4.2
Multiply by .
Step 2.1.2.2
Add and .
Step 2.2
Evaluate at .
Tap for more steps...
Step 2.2.1
Substitute for .
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Raise to the power of .
Step 2.2.2.1.2
Multiply by .
Step 2.2.2.1.3
Raise to the power of .
Step 2.2.2.1.4
Cancel the common factor of .
Tap for more steps...
Step 2.2.2.1.4.1
Move the leading negative in into the numerator.
Step 2.2.2.1.4.2
Factor out of .
Step 2.2.2.1.4.3
Cancel the common factor.
Step 2.2.2.1.4.4
Rewrite the expression.
Step 2.2.2.1.5
Multiply by .
Step 2.2.2.2
Subtract from .
Step 2.3
List all of the points.
Step 3
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
Absolute Maximum:
Absolute Minimum:
Step 4