Enter a problem...
Calculus Examples
Step 1
Simplify each term in the equation in order to set the right side equal to . The standard form of an ellipse or hyperbola requires the right side of the equation be .
Step 2
This is the form of a hyperbola. Use this form to determine the values used to find vertices and asymptotes of the hyperbola.
Step 3
Match the values in this hyperbola to those of the standard form. The variable represents the x-offset from the origin, represents the y-offset from origin, .
Step 4
The center of a hyperbola follows the form of . Substitute in the values of and .
Step 5
Step 5.1
Find the distance from the center to a focus of the hyperbola by using the following formula.
Step 5.2
Substitute the values of and in the formula.
Step 5.3
Simplify.
Step 5.3.1
Raise to the power of .
Step 5.3.2
Raise to the power of .
Step 5.3.3
Add and .
Step 5.3.4
Rewrite as .
Step 5.3.5
Pull terms out from under the radical, assuming positive real numbers.
Step 6
Step 6.1
The first vertex of a hyperbola can be found by adding to .
Step 6.2
Substitute the known values of , , and into the formula and simplify.
Step 6.3
The second vertex of a hyperbola can be found by subtracting from .
Step 6.4
Substitute the known values of , , and into the formula and simplify.
Step 6.5
The vertices of a hyperbola follow the form of . Hyperbolas have two vertices.
Step 7
Step 7.1
The first focus of a hyperbola can be found by adding to .
Step 7.2
Substitute the known values of , , and into the formula and simplify.
Step 7.3
The second focus of a hyperbola can be found by subtracting from .
Step 7.4
Substitute the known values of , , and into the formula and simplify.
Step 7.5
The foci of a hyperbola follow the form of . Hyperbolas have two foci.
Step 8
Step 8.1
Find the eccentricity by using the following formula.
Step 8.2
Substitute the values of and into the formula.
Step 8.3
Simplify.
Step 8.3.1
Simplify the numerator.
Step 8.3.1.1
Raise to the power of .
Step 8.3.1.2
Raise to the power of .
Step 8.3.1.3
Add and .
Step 8.3.1.4
Rewrite as .
Step 8.3.1.5
Pull terms out from under the radical, assuming positive real numbers.
Step 8.3.2
Cancel the common factor of and .
Step 8.3.2.1
Factor out of .
Step 8.3.2.2
Cancel the common factors.
Step 8.3.2.2.1
Factor out of .
Step 8.3.2.2.2
Cancel the common factor.
Step 8.3.2.2.3
Rewrite the expression.
Step 9
Step 9.1
Find the value of the focal parameter of the hyperbola by using the following formula.
Step 9.2
Substitute the values of and in the formula.
Step 9.3
Simplify.
Step 9.3.1
Raise to the power of .
Step 9.3.2
Cancel the common factor of and .
Step 9.3.2.1
Factor out of .
Step 9.3.2.2
Cancel the common factors.
Step 9.3.2.2.1
Factor out of .
Step 9.3.2.2.2
Cancel the common factor.
Step 9.3.2.2.3
Rewrite the expression.
Step 10
The asymptotes follow the form because this hyperbola opens up and down.
Step 11
Step 11.1
Remove parentheses.
Step 11.2
Simplify .
Step 11.2.1
Simplify each term.
Step 11.2.1.1
Multiply by .
Step 11.2.1.2
Apply the distributive property.
Step 11.2.1.3
Combine and .
Step 11.2.1.4
Cancel the common factor of .
Step 11.2.1.4.1
Factor out of .
Step 11.2.1.4.2
Cancel the common factor.
Step 11.2.1.4.3
Rewrite the expression.
Step 11.2.1.5
Multiply by .
Step 11.2.2
Add and .
Step 12
Step 12.1
Remove parentheses.
Step 12.2
Simplify .
Step 12.2.1
Simplify each term.
Step 12.2.1.1
Multiply by .
Step 12.2.1.2
Apply the distributive property.
Step 12.2.1.3
Combine and .
Step 12.2.1.4
Cancel the common factor of .
Step 12.2.1.4.1
Move the leading negative in into the numerator.
Step 12.2.1.4.2
Factor out of .
Step 12.2.1.4.3
Cancel the common factor.
Step 12.2.1.4.4
Rewrite the expression.
Step 12.2.1.5
Multiply by .
Step 12.2.1.6
Move to the left of .
Step 12.2.2
Add and .
Step 13
This hyperbola has two asymptotes.
Step 14
These values represent the important values for graphing and analyzing a hyperbola.
Center:
Vertices:
Foci:
Eccentricity:
Focal Parameter:
Asymptotes: ,
Step 15