Calculus Examples

Find Where Increasing/Decreasing Using Derivatives f(x)=1-x^(1/3)
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Differentiate.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2
Evaluate .
Tap for more steps...
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
To write as a fraction with a common denominator, multiply by .
Step 1.1.2.4
Combine and .
Step 1.1.2.5
Combine the numerators over the common denominator.
Step 1.1.2.6
Simplify the numerator.
Tap for more steps...
Step 1.1.2.6.1
Multiply by .
Step 1.1.2.6.2
Subtract from .
Step 1.1.2.7
Move the negative in front of the fraction.
Step 1.1.2.8
Combine and .
Step 1.1.2.9
Move to the denominator using the negative exponent rule .
Step 1.1.3
Subtract from .
Step 1.2
The first derivative of with respect to is .
Step 2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the first derivative equal to .
Step 2.2
Set the numerator equal to zero.
Step 2.3
Since , there are no solutions.
No solution
No solution
Step 3
There are no values of in the domain of the original problem where the derivative is or undefined.
No critical points found
Step 4
Find where the derivative is undefined.
Tap for more steps...
Step 4.1
Apply the rule to rewrite the exponentiation as a radical.
Step 4.2
Set the denominator in equal to to find where the expression is undefined.
Step 4.3
Solve for .
Tap for more steps...
Step 4.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 4.3.2
Simplify each side of the equation.
Tap for more steps...
Step 4.3.2.1
Use to rewrite as .
Step 4.3.2.2
Simplify the left side.
Tap for more steps...
Step 4.3.2.2.1
Simplify .
Tap for more steps...
Step 4.3.2.2.1.1
Apply the product rule to .
Step 4.3.2.2.1.2
Raise to the power of .
Step 4.3.2.2.1.3
Multiply the exponents in .
Tap for more steps...
Step 4.3.2.2.1.3.1
Apply the power rule and multiply exponents, .
Step 4.3.2.2.1.3.2
Cancel the common factor of .
Tap for more steps...
Step 4.3.2.2.1.3.2.1
Cancel the common factor.
Step 4.3.2.2.1.3.2.2
Rewrite the expression.
Step 4.3.2.3
Simplify the right side.
Tap for more steps...
Step 4.3.2.3.1
Raising to any positive power yields .
Step 4.3.3
Solve for .
Tap for more steps...
Step 4.3.3.1
Divide each term in by and simplify.
Tap for more steps...
Step 4.3.3.1.1
Divide each term in by .
Step 4.3.3.1.2
Simplify the left side.
Tap for more steps...
Step 4.3.3.1.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.3.3.1.2.1.1
Cancel the common factor.
Step 4.3.3.1.2.1.2
Divide by .
Step 4.3.3.1.3
Simplify the right side.
Tap for more steps...
Step 4.3.3.1.3.1
Divide by .
Step 4.3.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4.3.3.3
Simplify .
Tap for more steps...
Step 4.3.3.3.1
Rewrite as .
Step 4.3.3.3.2
Pull terms out from under the radical, assuming positive real numbers.
Step 4.3.3.3.3
Plus or minus is .
Step 5
After finding the point that makes the derivative equal to or undefined, the interval to check where is increasing and where it is decreasing is .
Step 6
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Simplify the denominator.
Tap for more steps...
Step 6.2.1.1
Rewrite as .
Step 6.2.1.2
Apply the power rule and multiply exponents, .
Step 6.2.1.3
Cancel the common factor of .
Tap for more steps...
Step 6.2.1.3.1
Cancel the common factor.
Step 6.2.1.3.2
Rewrite the expression.
Step 6.2.1.4
Raise to the power of .
Step 6.2.2
Multiply by .
Step 6.2.3
The final answer is .
Step 6.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 7
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Tap for more steps...
Step 7.2.1
One to any power is one.
Step 7.2.2
Multiply by .
Step 7.2.3
The final answer is .
Step 7.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 8
List the intervals on which the function is increasing and decreasing.
Decreasing on:
Step 9