Enter a problem...
Calculus Examples
Step 1
Set as a function of .
Step 2
Step 2.1
Differentiate.
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 3
Step 3.1
Factor out of .
Step 3.1.1
Factor out of .
Step 3.1.2
Factor out of .
Step 3.1.3
Factor out of .
Step 3.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.3
Set equal to .
Step 3.4
Set equal to and solve for .
Step 3.4.1
Set equal to .
Step 3.4.2
Add to both sides of the equation.
Step 3.5
The final solution is all the values that make true.
Step 4
Step 4.1
Replace the variable with in the expression.
Step 4.2
Simplify the result.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Raising to any positive power yields .
Step 4.2.1.2
Raising to any positive power yields .
Step 4.2.1.3
Multiply by .
Step 4.2.2
Add and .
Step 4.2.3
The final answer is .
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Raise to the power of .
Step 5.2.1.2
Raise to the power of .
Step 5.2.1.3
Multiply by .
Step 5.2.2
Subtract from .
Step 5.2.3
The final answer is .
Step 6
The horizontal tangent lines on function are .
Step 7