Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate using the Product Rule which states that is where and .
Step 1.2
The derivative of with respect to is .
Step 1.3
Differentiate using the Power Rule.
Step 1.3.1
Differentiate using the Power Rule which states that is where .
Step 1.3.2
Multiply by .
Step 2
Graph each side of the equation. The solution is the x-value of the point of intersection.
Step 3
Step 3.1
Replace the variable with in the expression.
Step 3.2
Simplify the result.
Step 3.2.1
The exact value of is .
Step 3.2.2
Multiply by .
Step 3.2.3
The final answer is .
Step 4
Step 4.1
Replace the variable with in the expression.
Step 4.2
Simplify the result.
Step 4.2.1
Multiply by .
Step 4.2.2
The final answer is .
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
Multiply by .
Step 5.2.2
The final answer is .
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Multiply by .
Step 6.2.2
The final answer is .
Step 7
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Step 7.2.1
Multiply by .
Step 7.2.2
The final answer is .
Step 8
Step 8.1
Replace the variable with in the expression.
Step 8.2
Simplify the result.
Step 8.2.1
Multiply by .
Step 8.2.2
The final answer is .
Step 9
Step 9.1
Replace the variable with in the expression.
Step 9.2
Simplify the result.
Step 9.2.1
Multiply by .
Step 9.2.2
The final answer is .
Step 10
The horizontal tangent lines on function are .
Step 11