Enter a problem...
Calculus Examples
Step 1
Step 1.1
Rewrite as .
Step 1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2
Set as a function of .
Step 3
Step 3.1
Differentiate using the Quotient Rule which states that is where and .
Step 3.2
Differentiate using the Product Rule which states that is where and .
Step 3.3
Differentiate.
Step 3.3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.4
Simplify the expression.
Step 3.3.4.1
Add and .
Step 3.3.4.2
Multiply by .
Step 3.3.5
By the Sum Rule, the derivative of with respect to is .
Step 3.3.6
Differentiate using the Power Rule which states that is where .
Step 3.3.7
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.8
Simplify by adding terms.
Step 3.3.8.1
Add and .
Step 3.3.8.2
Multiply by .
Step 3.3.8.3
Add and .
Step 3.3.8.4
Simplify the expression.
Step 3.3.8.4.1
Subtract from .
Step 3.3.8.4.2
Add and .
Step 3.3.8.4.3
Move to the left of .
Step 3.3.9
By the Sum Rule, the derivative of with respect to is .
Step 3.3.10
Differentiate using the Power Rule which states that is where .
Step 3.3.11
Differentiate using the Power Rule which states that is where .
Step 3.3.12
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.13
Add and .
Step 3.4
Simplify.
Step 3.4.1
Apply the distributive property.
Step 3.4.2
Apply the distributive property.
Step 3.4.3
Apply the distributive property.
Step 3.4.4
Simplify the numerator.
Step 3.4.4.1
Simplify each term.
Step 3.4.4.1.1
Multiply by by adding the exponents.
Step 3.4.4.1.1.1
Move .
Step 3.4.4.1.1.2
Multiply by .
Step 3.4.4.1.1.2.1
Raise to the power of .
Step 3.4.4.1.1.2.2
Use the power rule to combine exponents.
Step 3.4.4.1.1.3
Add and .
Step 3.4.4.1.2
Multiply by by adding the exponents.
Step 3.4.4.1.2.1
Move .
Step 3.4.4.1.2.2
Multiply by .
Step 3.4.4.1.3
Multiply by .
Step 3.4.4.1.4
Multiply by .
Step 3.4.4.1.5
Expand using the FOIL Method.
Step 3.4.4.1.5.1
Apply the distributive property.
Step 3.4.4.1.5.2
Apply the distributive property.
Step 3.4.4.1.5.3
Apply the distributive property.
Step 3.4.4.1.6
Simplify and combine like terms.
Step 3.4.4.1.6.1
Simplify each term.
Step 3.4.4.1.6.1.1
Multiply by by adding the exponents.
Step 3.4.4.1.6.1.1.1
Move .
Step 3.4.4.1.6.1.1.2
Multiply by .
Step 3.4.4.1.6.1.2
Multiply .
Step 3.4.4.1.6.1.2.1
Multiply by .
Step 3.4.4.1.6.1.2.2
Multiply by .
Step 3.4.4.1.6.1.3
Rewrite as .
Step 3.4.4.1.6.1.4
Multiply by .
Step 3.4.4.1.6.2
Subtract from .
Step 3.4.4.1.6.3
Add and .
Step 3.4.4.1.7
Expand using the FOIL Method.
Step 3.4.4.1.7.1
Apply the distributive property.
Step 3.4.4.1.7.2
Apply the distributive property.
Step 3.4.4.1.7.3
Apply the distributive property.
Step 3.4.4.1.8
Simplify each term.
Step 3.4.4.1.8.1
Rewrite using the commutative property of multiplication.
Step 3.4.4.1.8.2
Multiply by by adding the exponents.
Step 3.4.4.1.8.2.1
Move .
Step 3.4.4.1.8.2.2
Multiply by .
Step 3.4.4.1.8.2.2.1
Raise to the power of .
Step 3.4.4.1.8.2.2.2
Use the power rule to combine exponents.
Step 3.4.4.1.8.2.3
Add and .
Step 3.4.4.1.8.3
Multiply by .
Step 3.4.4.1.8.4
Multiply by .
Step 3.4.4.1.8.5
Multiply by .
Step 3.4.4.1.8.6
Multiply by .
Step 3.4.4.2
Combine the opposite terms in .
Step 3.4.4.2.1
Subtract from .
Step 3.4.4.2.2
Add and .
Step 3.4.4.3
Subtract from .
Step 3.4.4.4
Add and .
Step 4
Step 4.1
Set the numerator equal to zero.
Step 4.2
Solve the equation for .
Step 4.2.1
Use the quadratic formula to find the solutions.
Step 4.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 4.2.3
Simplify.
Step 4.2.3.1
Simplify the numerator.
Step 4.2.3.1.1
Raise to the power of .
Step 4.2.3.1.2
Multiply .
Step 4.2.3.1.2.1
Multiply by .
Step 4.2.3.1.2.2
Multiply by .
Step 4.2.3.1.3
Subtract from .
Step 4.2.3.1.4
Rewrite as .
Step 4.2.3.1.4.1
Factor out of .
Step 4.2.3.1.4.2
Rewrite as .
Step 4.2.3.1.5
Pull terms out from under the radical.
Step 4.2.3.2
Multiply by .
Step 4.2.3.3
Simplify .
Step 4.2.4
Simplify the expression to solve for the portion of the .
Step 4.2.4.1
Simplify the numerator.
Step 4.2.4.1.1
Raise to the power of .
Step 4.2.4.1.2
Multiply .
Step 4.2.4.1.2.1
Multiply by .
Step 4.2.4.1.2.2
Multiply by .
Step 4.2.4.1.3
Subtract from .
Step 4.2.4.1.4
Rewrite as .
Step 4.2.4.1.4.1
Factor out of .
Step 4.2.4.1.4.2
Rewrite as .
Step 4.2.4.1.5
Pull terms out from under the radical.
Step 4.2.4.2
Multiply by .
Step 4.2.4.3
Simplify .
Step 4.2.4.4
Change the to .
Step 4.2.5
Simplify the expression to solve for the portion of the .
Step 4.2.5.1
Simplify the numerator.
Step 4.2.5.1.1
Raise to the power of .
Step 4.2.5.1.2
Multiply .
Step 4.2.5.1.2.1
Multiply by .
Step 4.2.5.1.2.2
Multiply by .
Step 4.2.5.1.3
Subtract from .
Step 4.2.5.1.4
Rewrite as .
Step 4.2.5.1.4.1
Factor out of .
Step 4.2.5.1.4.2
Rewrite as .
Step 4.2.5.1.5
Pull terms out from under the radical.
Step 4.2.5.2
Multiply by .
Step 4.2.5.3
Simplify .
Step 4.2.5.4
Change the to .
Step 4.2.6
The final answer is the combination of both solutions.
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
Remove parentheses.
Step 5.2.2
Simplify the numerator.
Step 5.2.2.1
Add and .
Step 5.2.2.2
Subtract from .
Step 5.2.3
Simplify the denominator.
Step 5.2.3.1
Rewrite as .
Step 5.2.3.2
Expand using the FOIL Method.
Step 5.2.3.2.1
Apply the distributive property.
Step 5.2.3.2.2
Apply the distributive property.
Step 5.2.3.2.3
Apply the distributive property.
Step 5.2.3.3
Simplify and combine like terms.
Step 5.2.3.3.1
Simplify each term.
Step 5.2.3.3.1.1
Multiply by .
Step 5.2.3.3.1.2
Move to the left of .
Step 5.2.3.3.1.3
Combine using the product rule for radicals.
Step 5.2.3.3.1.4
Multiply by .
Step 5.2.3.3.1.5
Rewrite as .
Step 5.2.3.3.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 5.2.3.3.2
Add and .
Step 5.2.3.3.3
Subtract from .
Step 5.2.3.4
Subtract from .
Step 5.2.3.5
Add and .
Step 5.2.3.6
Add and .
Step 5.2.4
Expand using the FOIL Method.
Step 5.2.4.1
Apply the distributive property.
Step 5.2.4.2
Apply the distributive property.
Step 5.2.4.3
Apply the distributive property.
Step 5.2.5
Simplify and combine like terms.
Step 5.2.5.1
Simplify each term.
Step 5.2.5.1.1
Multiply by .
Step 5.2.5.1.2
Rewrite as .
Step 5.2.5.1.3
Move to the left of .
Step 5.2.5.1.4
Combine using the product rule for radicals.
Step 5.2.5.1.5
Multiply by .
Step 5.2.5.1.6
Rewrite as .
Step 5.2.5.1.7
Pull terms out from under the radical, assuming positive real numbers.
Step 5.2.5.2
Add and .
Step 5.2.5.3
Subtract from .
Step 5.2.6
Multiply by .
Step 5.2.7
Simplify terms.
Step 5.2.7.1
Multiply by .
Step 5.2.7.2
Expand the denominator using the FOIL method.
Step 5.2.7.3
Simplify.
Step 5.2.7.4
Cancel the common factor of and .
Step 5.2.7.4.1
Factor out of .
Step 5.2.7.4.2
Cancel the common factors.
Step 5.2.7.4.2.1
Factor out of .
Step 5.2.7.4.2.2
Cancel the common factor.
Step 5.2.7.4.2.3
Rewrite the expression.
Step 5.2.8
Simplify the numerator.
Step 5.2.8.1
Expand using the FOIL Method.
Step 5.2.8.1.1
Apply the distributive property.
Step 5.2.8.1.2
Apply the distributive property.
Step 5.2.8.1.3
Apply the distributive property.
Step 5.2.8.2
Simplify and combine like terms.
Step 5.2.8.2.1
Simplify each term.
Step 5.2.8.2.1.1
Multiply by .
Step 5.2.8.2.1.2
Multiply by .
Step 5.2.8.2.1.3
Multiply .
Step 5.2.8.2.1.3.1
Raise to the power of .
Step 5.2.8.2.1.3.2
Raise to the power of .
Step 5.2.8.2.1.3.3
Use the power rule to combine exponents.
Step 5.2.8.2.1.3.4
Add and .
Step 5.2.8.2.1.4
Rewrite as .
Step 5.2.8.2.1.4.1
Use to rewrite as .
Step 5.2.8.2.1.4.2
Apply the power rule and multiply exponents, .
Step 5.2.8.2.1.4.3
Combine and .
Step 5.2.8.2.1.4.4
Cancel the common factor of .
Step 5.2.8.2.1.4.4.1
Cancel the common factor.
Step 5.2.8.2.1.4.4.2
Rewrite the expression.
Step 5.2.8.2.1.4.5
Evaluate the exponent.
Step 5.2.8.2.1.5
Multiply by .
Step 5.2.8.2.2
Subtract from .
Step 5.2.8.2.3
Add and .
Step 5.2.8.2.4
Subtract from .
Step 5.2.9
Move the negative in front of the fraction.
Step 5.2.10
The final answer is .
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Remove parentheses.
Step 6.2.2
Simplify the numerator.
Step 6.2.2.1
Add and .
Step 6.2.2.2
Subtract from .
Step 6.2.3
Simplify the denominator.
Step 6.2.3.1
Rewrite as .
Step 6.2.3.2
Expand using the FOIL Method.
Step 6.2.3.2.1
Apply the distributive property.
Step 6.2.3.2.2
Apply the distributive property.
Step 6.2.3.2.3
Apply the distributive property.
Step 6.2.3.3
Simplify and combine like terms.
Step 6.2.3.3.1
Simplify each term.
Step 6.2.3.3.1.1
Multiply by .
Step 6.2.3.3.1.2
Multiply by .
Step 6.2.3.3.1.3
Multiply by .
Step 6.2.3.3.1.4
Multiply .
Step 6.2.3.3.1.4.1
Multiply by .
Step 6.2.3.3.1.4.2
Multiply by .
Step 6.2.3.3.1.4.3
Raise to the power of .
Step 6.2.3.3.1.4.4
Raise to the power of .
Step 6.2.3.3.1.4.5
Use the power rule to combine exponents.
Step 6.2.3.3.1.4.6
Add and .
Step 6.2.3.3.1.5
Rewrite as .
Step 6.2.3.3.1.5.1
Use to rewrite as .
Step 6.2.3.3.1.5.2
Apply the power rule and multiply exponents, .
Step 6.2.3.3.1.5.3
Combine and .
Step 6.2.3.3.1.5.4
Cancel the common factor of .
Step 6.2.3.3.1.5.4.1
Cancel the common factor.
Step 6.2.3.3.1.5.4.2
Rewrite the expression.
Step 6.2.3.3.1.5.5
Evaluate the exponent.
Step 6.2.3.3.2
Add and .
Step 6.2.3.3.3
Add and .
Step 6.2.3.4
Subtract from .
Step 6.2.3.5
Add and .
Step 6.2.3.6
Subtract from .
Step 6.2.4
Expand using the FOIL Method.
Step 6.2.4.1
Apply the distributive property.
Step 6.2.4.2
Apply the distributive property.
Step 6.2.4.3
Apply the distributive property.
Step 6.2.5
Simplify and combine like terms.
Step 6.2.5.1
Simplify each term.
Step 6.2.5.1.1
Multiply by .
Step 6.2.5.1.2
Multiply .
Step 6.2.5.1.2.1
Multiply by .
Step 6.2.5.1.2.2
Multiply by .
Step 6.2.5.1.3
Multiply by .
Step 6.2.5.1.4
Multiply .
Step 6.2.5.1.4.1
Multiply by .
Step 6.2.5.1.4.2
Multiply by .
Step 6.2.5.1.4.3
Raise to the power of .
Step 6.2.5.1.4.4
Raise to the power of .
Step 6.2.5.1.4.5
Use the power rule to combine exponents.
Step 6.2.5.1.4.6
Add and .
Step 6.2.5.1.5
Rewrite as .
Step 6.2.5.1.5.1
Use to rewrite as .
Step 6.2.5.1.5.2
Apply the power rule and multiply exponents, .
Step 6.2.5.1.5.3
Combine and .
Step 6.2.5.1.5.4
Cancel the common factor of .
Step 6.2.5.1.5.4.1
Cancel the common factor.
Step 6.2.5.1.5.4.2
Rewrite the expression.
Step 6.2.5.1.5.5
Evaluate the exponent.
Step 6.2.5.2
Add and .
Step 6.2.5.3
Add and .
Step 6.2.6
Multiply by .
Step 6.2.7
Simplify terms.
Step 6.2.7.1
Multiply by .
Step 6.2.7.2
Expand the denominator using the FOIL method.
Step 6.2.7.3
Simplify.
Step 6.2.7.4
Cancel the common factor of and .
Step 6.2.7.4.1
Factor out of .
Step 6.2.7.4.2
Cancel the common factors.
Step 6.2.7.4.2.1
Factor out of .
Step 6.2.7.4.2.2
Cancel the common factor.
Step 6.2.7.4.2.3
Rewrite the expression.
Step 6.2.8
Simplify the numerator.
Step 6.2.8.1
Expand using the FOIL Method.
Step 6.2.8.1.1
Apply the distributive property.
Step 6.2.8.1.2
Apply the distributive property.
Step 6.2.8.1.3
Apply the distributive property.
Step 6.2.8.2
Simplify and combine like terms.
Step 6.2.8.2.1
Simplify each term.
Step 6.2.8.2.1.1
Multiply by .
Step 6.2.8.2.1.2
Multiply by .
Step 6.2.8.2.1.3
Multiply by .
Step 6.2.8.2.1.4
Multiply .
Step 6.2.8.2.1.4.1
Multiply by .
Step 6.2.8.2.1.4.2
Raise to the power of .
Step 6.2.8.2.1.4.3
Raise to the power of .
Step 6.2.8.2.1.4.4
Use the power rule to combine exponents.
Step 6.2.8.2.1.4.5
Add and .
Step 6.2.8.2.1.5
Rewrite as .
Step 6.2.8.2.1.5.1
Use to rewrite as .
Step 6.2.8.2.1.5.2
Apply the power rule and multiply exponents, .
Step 6.2.8.2.1.5.3
Combine and .
Step 6.2.8.2.1.5.4
Cancel the common factor of .
Step 6.2.8.2.1.5.4.1
Cancel the common factor.
Step 6.2.8.2.1.5.4.2
Rewrite the expression.
Step 6.2.8.2.1.5.5
Evaluate the exponent.
Step 6.2.8.2.1.6
Multiply by .
Step 6.2.8.2.2
Subtract from .
Step 6.2.8.2.3
Subtract from .
Step 6.2.8.2.4
Add and .
Step 6.2.9
The final answer is .
Step 7
The horizontal tangent lines on function are .
Step 8