Calculus Examples

Find the Horizontal Tangent Line f(x)=6x^2-4x+5
Step 1
Find the derivative.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 1.3
Evaluate .
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Multiply by .
Step 1.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.4.2
Add and .
Step 2
Set the derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Add to both sides of the equation.
Step 2.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.2.1
Divide each term in by .
Step 2.2.2
Simplify the left side.
Tap for more steps...
Step 2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.2.1.1
Cancel the common factor.
Step 2.2.2.1.2
Divide by .
Step 2.2.3
Simplify the right side.
Tap for more steps...
Step 2.2.3.1
Cancel the common factor of and .
Tap for more steps...
Step 2.2.3.1.1
Factor out of .
Step 2.2.3.1.2
Cancel the common factors.
Tap for more steps...
Step 2.2.3.1.2.1
Factor out of .
Step 2.2.3.1.2.2
Cancel the common factor.
Step 2.2.3.1.2.3
Rewrite the expression.
Step 3
Solve the original function at .
Tap for more steps...
Step 3.1
Replace the variable with in the expression.
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Apply the product rule to .
Step 3.2.1.2
One to any power is one.
Step 3.2.1.3
Raise to the power of .
Step 3.2.1.4
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.4.1
Factor out of .
Step 3.2.1.4.2
Factor out of .
Step 3.2.1.4.3
Cancel the common factor.
Step 3.2.1.4.4
Rewrite the expression.
Step 3.2.1.5
Combine and .
Step 3.2.1.6
Combine and .
Step 3.2.1.7
Move the negative in front of the fraction.
Step 3.2.2
Combine fractions.
Tap for more steps...
Step 3.2.2.1
Combine the numerators over the common denominator.
Step 3.2.2.2
Simplify the expression.
Tap for more steps...
Step 3.2.2.2.1
Subtract from .
Step 3.2.2.2.2
Move the negative in front of the fraction.
Step 3.2.3
To write as a fraction with a common denominator, multiply by .
Step 3.2.4
Combine and .
Step 3.2.5
Combine the numerators over the common denominator.
Step 3.2.6
Simplify the numerator.
Tap for more steps...
Step 3.2.6.1
Multiply by .
Step 3.2.6.2
Subtract from .
Step 3.2.7
The final answer is .
Step 4
The horizontal tangent line on function is .
Step 5