Calculus Examples

Find the Horizontal Tangent Line f(x)=(x^2)/(x-5)
Step 1
Find the derivative.
Tap for more steps...
Step 1.1
Differentiate using the Quotient Rule which states that is where and .
Step 1.2
Differentiate.
Tap for more steps...
Step 1.2.1
Differentiate using the Power Rule which states that is where .
Step 1.2.2
Move to the left of .
Step 1.2.3
By the Sum Rule, the derivative of with respect to is .
Step 1.2.4
Differentiate using the Power Rule which states that is where .
Step 1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.6
Simplify the expression.
Tap for more steps...
Step 1.2.6.1
Add and .
Step 1.2.6.2
Multiply by .
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Apply the distributive property.
Step 1.3.2
Apply the distributive property.
Step 1.3.3
Simplify the numerator.
Tap for more steps...
Step 1.3.3.1
Simplify each term.
Tap for more steps...
Step 1.3.3.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.3.3.1.1.1
Move .
Step 1.3.3.1.1.2
Multiply by .
Step 1.3.3.1.2
Multiply by .
Step 1.3.3.2
Subtract from .
Step 1.3.4
Factor out of .
Tap for more steps...
Step 1.3.4.1
Factor out of .
Step 1.3.4.2
Factor out of .
Step 1.3.4.3
Factor out of .
Step 2
Set the derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the numerator equal to zero.
Step 2.2
Solve the equation for .
Tap for more steps...
Step 2.2.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.2.2
Set equal to .
Step 2.2.3
Set equal to and solve for .
Tap for more steps...
Step 2.2.3.1
Set equal to .
Step 2.2.3.2
Add to both sides of the equation.
Step 2.2.4
The final solution is all the values that make true.
Step 3
Solve the original function at .
Tap for more steps...
Step 3.1
Replace the variable with in the expression.
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Raising to any positive power yields .
Step 3.2.2
Subtract from .
Step 3.2.3
Divide by .
Step 3.2.4
The final answer is .
Step 4
Solve the original function at .
Tap for more steps...
Step 4.1
Replace the variable with in the expression.
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Raise to the power of .
Step 4.2.2
Subtract from .
Step 4.2.3
Divide by .
Step 4.2.4
The final answer is .
Step 5
The horizontal tangent lines on function are .
Step 6