Enter a problem...
Calculus Examples
y2-xy-12=0y2−xy−12=0
Step 1
Step 1.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 1.2
Substitute the values a=1a=1, b=-xb=−x, and c=-12c=−12 into the quadratic formula and solve for yy.
x±√(-x)2-4⋅(1⋅-12)2⋅1x±√(−x)2−4⋅(1⋅−12)2⋅1
Step 1.3
Simplify.
Step 1.3.1
Simplify the numerator.
Step 1.3.1.1
Apply the product rule to -x−x.
y=x±√(-1)2x2-4⋅1⋅-122⋅1y=x±√(−1)2x2−4⋅1⋅−122⋅1
Step 1.3.1.2
Raise -1−1 to the power of 22.
y=x±√1x2-4⋅1⋅-122⋅1y=x±√1x2−4⋅1⋅−122⋅1
Step 1.3.1.3
Multiply x2x2 by 11.
y=x±√x2-4⋅1⋅-122⋅1y=x±√x2−4⋅1⋅−122⋅1
Step 1.3.1.4
Multiply -4⋅1⋅-12−4⋅1⋅−12.
Step 1.3.1.4.1
Multiply -4−4 by 11.
y=x±√x2-4⋅-122⋅1y=x±√x2−4⋅−122⋅1
Step 1.3.1.4.2
Multiply -4−4 by -12−12.
y=x±√x2+482⋅1y=x±√x2+482⋅1
y=x±√x2+482⋅1y=x±√x2+482⋅1
y=x±√x2+482⋅1y=x±√x2+482⋅1
Step 1.3.2
Multiply 22 by 11.
y=x±√x2+482y=x±√x2+482
y=x±√x2+482y=x±√x2+482
Step 1.4
Simplify the expression to solve for the ++ portion of the ±±.
Step 1.4.1
Simplify the numerator.
Step 1.4.1.1
Apply the product rule to -x−x.
y=x±√(-1)2x2-4⋅1⋅-122⋅1y=x±√(−1)2x2−4⋅1⋅−122⋅1
Step 1.4.1.2
Raise -1−1 to the power of 22.
y=x±√1x2-4⋅1⋅-122⋅1y=x±√1x2−4⋅1⋅−122⋅1
Step 1.4.1.3
Multiply x2x2 by 11.
y=x±√x2-4⋅1⋅-122⋅1y=x±√x2−4⋅1⋅−122⋅1
Step 1.4.1.4
Multiply -4⋅1⋅-12−4⋅1⋅−12.
Step 1.4.1.4.1
Multiply -4−4 by 11.
y=x±√x2-4⋅-122⋅1y=x±√x2−4⋅−122⋅1
Step 1.4.1.4.2
Multiply -4−4 by -12−12.
y=x±√x2+482⋅1y=x±√x2+482⋅1
y=x±√x2+482⋅1y=x±√x2+482⋅1
y=x±√x2+482⋅1y=x±√x2+482⋅1
Step 1.4.2
Multiply 22 by 11.
y=x±√x2+482y=x±√x2+482
Step 1.4.3
Change the ±± to ++.
y=x+√x2+482y=x+√x2+482
y=x+√x2+482y=x+√x2+482
Step 1.5
Simplify the expression to solve for the -− portion of the ±±.
Step 1.5.1
Simplify the numerator.
Step 1.5.1.1
Apply the product rule to -x−x.
y=x±√(-1)2x2-4⋅1⋅-122⋅1y=x±√(−1)2x2−4⋅1⋅−122⋅1
Step 1.5.1.2
Raise -1−1 to the power of 22.
y=x±√1x2-4⋅1⋅-122⋅1y=x±√1x2−4⋅1⋅−122⋅1
Step 1.5.1.3
Multiply x2x2 by 11.
y=x±√x2-4⋅1⋅-122⋅1y=x±√x2−4⋅1⋅−122⋅1
Step 1.5.1.4
Multiply -4⋅1⋅-12−4⋅1⋅−12.
Step 1.5.1.4.1
Multiply -4−4 by 11.
y=x±√x2-4⋅-122⋅1y=x±√x2−4⋅−122⋅1
Step 1.5.1.4.2
Multiply -4−4 by -12−12.
y=x±√x2+482⋅1y=x±√x2+482⋅1
y=x±√x2+482⋅1y=x±√x2+482⋅1
y=x±√x2+482⋅1y=x±√x2+482⋅1
Step 1.5.2
Multiply 22 by 11.
y=x±√x2+482y=x±√x2+482
Step 1.5.3
Change the ±± to -−.
y=x-√x2+482y=x−√x2+482
y=x-√x2+482y=x−√x2+482
Step 1.6
The final answer is the combination of both solutions.
y=x+√x2+482y=x+√x2+482
y=x-√x2+482y=x−√x2+482
y=x+√x2+482y=x+√x2+482
y=x-√x2+482y=x−√x2+482
Step 2
Set each solution of yy as a function of xx.
y=x+√x2+482→f(x)=x+√x2+482y=x+√x2+482→f(x)=x+√x2+482
y=x-√x2+482→f(x)=x-√x2+482y=x−√x2+482→f(x)=x−√x2+482
Step 3
Step 3.1
Differentiate both sides of the equation.
ddx(y2-xy-12)=ddx(0)
Step 3.2
Differentiate the left side of the equation.
Step 3.2.1
By the Sum Rule, the derivative of y2-xy-12 with respect to x is ddx[y2]+ddx[-xy]+ddx[-12].
ddx[y2]+ddx[-xy]+ddx[-12]
Step 3.2.2
Evaluate ddx[y2].
Step 3.2.2.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=y.
Step 3.2.2.1.1
To apply the Chain Rule, set u as y.
ddu[u2]ddx[y]+ddx[-xy]+ddx[-12]
Step 3.2.2.1.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=2.
2uddx[y]+ddx[-xy]+ddx[-12]
Step 3.2.2.1.3
Replace all occurrences of u with y.
2yddx[y]+ddx[-xy]+ddx[-12]
2yddx[y]+ddx[-xy]+ddx[-12]
Step 3.2.2.2
Rewrite ddx[y] as y′.
2yy′+ddx[-xy]+ddx[-12]
2yy′+ddx[-xy]+ddx[-12]
Step 3.2.3
Evaluate ddx[-xy].
Step 3.2.3.1
Since -1 is constant with respect to x, the derivative of -xy with respect to x is -ddx[xy].
2yy′-ddx[xy]+ddx[-12]
Step 3.2.3.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=y.
2yy′-(xddx[y]+yddx[x])+ddx[-12]
Step 3.2.3.3
Rewrite ddx[y] as y′.
2yy′-(xy′+yddx[x])+ddx[-12]
Step 3.2.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
2yy′-(xy′+y⋅1)+ddx[-12]
Step 3.2.3.5
Multiply y by 1.
2yy′-(xy′+y)+ddx[-12]
2yy′-(xy′+y)+ddx[-12]
Step 3.2.4
Since -12 is constant with respect to x, the derivative of -12 with respect to x is 0.
2yy′-(xy′+y)+0
Step 3.2.5
Simplify.
Step 3.2.5.1
Apply the distributive property.
2yy′-(xy′)-y+0
Step 3.2.5.2
Add 2yy′-xy′-y and 0.
2yy′-xy′-y
2yy′-xy′-y
2yy′-xy′-y
Step 3.3
Since 0 is constant with respect to x, the derivative of 0 with respect to x is 0.
0
Step 3.4
Reform the equation by setting the left side equal to the right side.
2yy′-xy′-y=0
Step 3.5
Solve for y′.
Step 3.5.1
Add y to both sides of the equation.
2yy′-xy′=y
Step 3.5.2
Factor y′ out of 2yy′-xy′.
Step 3.5.2.1
Factor y′ out of 2yy′.
y′(2y)-xy′=y
Step 3.5.2.2
Factor y′ out of -xy′.
y′(2y)+y′(-x)=y
Step 3.5.2.3
Factor y′ out of y′(2y)+y′(-x).
y′(2y-x)=y
y′(2y-x)=y
Step 3.5.3
Divide each term in y′(2y-x)=y by 2y-x and simplify.
Step 3.5.3.1
Divide each term in y′(2y-x)=y by 2y-x.
y′(2y-x)2y-x=y2y-x
Step 3.5.3.2
Simplify the left side.
Step 3.5.3.2.1
Cancel the common factor of 2y-x.
Step 3.5.3.2.1.1
Cancel the common factor.
y′(2y-x)2y-x=y2y-x
Step 3.5.3.2.1.2
Divide y′ by 1.
y′=y2y-x
y′=y2y-x
y′=y2y-x
y′=y2y-x
y′=y2y-x
Step 3.6
Replace y′ with dydx.
dydx=y2y-x
dydx=y2y-x
Step 4
The roots of the derivative y2y-x cannot be found.
No horizontal tangent lines
Step 5