Calculus Examples

Find the Horizontal Tangent Line x^3+y^3=2xy
Step 1
Set each solution of as a function of .
Step 2
Because the variable in the equation has a degree greater than , use implicit differentiation to solve for the derivative .
Tap for more steps...
Step 2.1
Differentiate both sides of the equation.
Step 2.2
Differentiate the left side of the equation.
Tap for more steps...
Step 2.2.1
Differentiate.
Tap for more steps...
Step 2.2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2.2
Evaluate .
Tap for more steps...
Step 2.2.2.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.2.1.1
To apply the Chain Rule, set as .
Step 2.2.2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2.2.1.3
Replace all occurrences of with .
Step 2.2.2.2
Rewrite as .
Step 2.3
Differentiate the right side of the equation.
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Product Rule which states that is where and .
Step 2.3.3
Rewrite as .
Step 2.3.4
Differentiate using the Power Rule which states that is where .
Step 2.3.5
Multiply by .
Step 2.3.6
Apply the distributive property.
Step 2.4
Reform the equation by setting the left side equal to the right side.
Step 2.5
Solve for .
Tap for more steps...
Step 2.5.1
Subtract from both sides of the equation.
Step 2.5.2
Subtract from both sides of the equation.
Step 2.5.3
Factor out of .
Tap for more steps...
Step 2.5.3.1
Factor out of .
Step 2.5.3.2
Factor out of .
Step 2.5.3.3
Factor out of .
Step 2.5.4
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.4.1
Divide each term in by .
Step 2.5.4.2
Simplify the left side.
Tap for more steps...
Step 2.5.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.5.4.2.1.1
Cancel the common factor.
Step 2.5.4.2.1.2
Divide by .
Step 2.5.4.3
Simplify the right side.
Tap for more steps...
Step 2.5.4.3.1
Combine the numerators over the common denominator.
Step 2.6
Replace with .
Step 3
Set the derivative equal to then solve the equation .
Tap for more steps...
Step 3.1
Set the numerator equal to zero.
Step 3.2
Solve the equation for .
Tap for more steps...
Step 3.2.1
Subtract from both sides of the equation.
Step 3.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.2.2.1
Divide each term in by .
Step 3.2.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.2.2.1.1
Cancel the common factor.
Step 3.2.2.2.1.2
Divide by .
Step 3.2.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.2.3.1
Dividing two negative values results in a positive value.
Step 3.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.2.4
Simplify .
Tap for more steps...
Step 3.2.4.1
Rewrite as .
Step 3.2.4.2
Multiply by .
Step 3.2.4.3
Combine and simplify the denominator.
Tap for more steps...
Step 3.2.4.3.1
Multiply by .
Step 3.2.4.3.2
Raise to the power of .
Step 3.2.4.3.3
Raise to the power of .
Step 3.2.4.3.4
Use the power rule to combine exponents.
Step 3.2.4.3.5
Add and .
Step 3.2.4.3.6
Rewrite as .
Tap for more steps...
Step 3.2.4.3.6.1
Use to rewrite as .
Step 3.2.4.3.6.2
Apply the power rule and multiply exponents, .
Step 3.2.4.3.6.3
Combine and .
Step 3.2.4.3.6.4
Cancel the common factor of .
Tap for more steps...
Step 3.2.4.3.6.4.1
Cancel the common factor.
Step 3.2.4.3.6.4.2
Rewrite the expression.
Step 3.2.4.3.6.5
Evaluate the exponent.
Step 3.2.4.4
Simplify the numerator.
Tap for more steps...
Step 3.2.4.4.1
Combine using the product rule for radicals.
Step 3.2.4.4.2
Multiply by .
Step 3.2.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.2.5.1
First, use the positive value of the to find the first solution.
Step 3.2.5.2
Next, use the negative value of the to find the second solution.
Step 3.2.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Solve the function at .
Tap for more steps...
Step 4.1
Replace the variable with in the expression.
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Combine and .
Step 4.2.2
Combine and .
Step 4.2.3
The final answer is .
Step 5
Solve the function at .
Tap for more steps...
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Multiply .
Tap for more steps...
Step 5.2.1.1
Multiply by .
Step 5.2.1.2
Combine and .
Step 5.2.2
Move the negative in front of the fraction.
Step 5.2.3
Combine and .
Step 5.2.4
Move to the left of .
Step 5.2.5
The final answer is .
Step 6
The horizontal tangent lines are
Step 7