Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 2
Step 2.1
Add to both sides of the equation.
Step 2.2
Divide each term in by and simplify.
Step 2.2.1
Divide each term in by .
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Cancel the common factor of .
Step 2.2.2.1.1
Cancel the common factor.
Step 2.2.2.1.2
Divide by .
Step 3
Step 3.1
Replace the variable with in the expression.
Step 3.2
Simplify the result.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Apply the product rule to .
Step 3.2.1.2
One to any power is one.
Step 3.2.1.3
Raise to the power of .
Step 3.2.2
To write as a fraction with a common denominator, multiply by .
Step 3.2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.2.3.1
Multiply by .
Step 3.2.3.2
Multiply by .
Step 3.2.4
Combine the numerators over the common denominator.
Step 3.2.5
Subtract from .
Step 3.2.6
Move the negative in front of the fraction.
Step 3.2.7
The final answer is .
Step 4
The horizontal tangent line on function is .
Step 5