Enter a problem...
Calculus Examples
,
Step 1
The Root Mean Square (RMS) of a function over a specified interval is the square root of the arithmetic mean (average) of the squares of the original values.
Step 2
Substitute the actual values into the formula for the root mean square of a function.
Step 3
Step 3.1
Let . Then , so . Rewrite using and .
Step 3.1.1
Let . Find .
Step 3.1.1.1
Differentiate .
Step 3.1.1.2
Differentiate.
Step 3.1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 3.1.1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.1.1.3
Evaluate .
Step 3.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 3.1.1.3.3
Multiply by .
Step 3.1.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.1.1.5
Combine terms.
Step 3.1.1.5.1
Add and .
Step 3.1.1.5.2
Add and .
Step 3.1.2
Substitute the lower limit in for in .
Step 3.1.3
Simplify.
Step 3.1.3.1
Multiply by .
Step 3.1.3.2
Add and .
Step 3.1.4
Substitute the upper limit in for in .
Step 3.1.5
Simplify.
Step 3.1.5.1
Multiply by .
Step 3.1.5.2
Add and .
Step 3.1.6
The values found for and will be used to evaluate the definite integral.
Step 3.1.7
Rewrite the problem using , , and the new limits of integration.
Step 3.2
Combine and .
Step 3.3
Since is constant with respect to , move out of the integral.
Step 3.4
By the Power Rule, the integral of with respect to is .
Step 3.5
Evaluate at and at .
Step 3.6
Simplify.
Step 3.6.1
Simplify each term.
Step 3.6.1.1
Use the Binomial Theorem.
Step 3.6.1.2
Simplify each term.
Step 3.6.1.2.1
Apply the product rule to .
Step 3.6.1.2.2
Raise to the power of .
Step 3.6.1.2.3
Apply the product rule to .
Step 3.6.1.2.4
Raise to the power of .
Step 3.6.1.2.5
Multiply by .
Step 3.6.1.2.6
Multiply by .
Step 3.6.1.2.7
Multiply by .
Step 3.6.1.2.8
Raise to the power of .
Step 3.6.1.2.9
Multiply by .
Step 3.6.1.2.10
Raise to the power of .
Step 3.6.1.3
Apply the distributive property.
Step 3.6.1.4
Simplify.
Step 3.6.1.4.1
Multiply .
Step 3.6.1.4.1.1
Combine and .
Step 3.6.1.4.1.2
Combine and .
Step 3.6.1.4.2
Cancel the common factor of .
Step 3.6.1.4.2.1
Factor out of .
Step 3.6.1.4.2.2
Cancel the common factor.
Step 3.6.1.4.2.3
Rewrite the expression.
Step 3.6.1.4.3
Cancel the common factor of .
Step 3.6.1.4.3.1
Factor out of .
Step 3.6.1.4.3.2
Cancel the common factor.
Step 3.6.1.4.3.3
Rewrite the expression.
Step 3.6.1.4.4
Combine and .
Step 3.6.1.5
Use the Binomial Theorem.
Step 3.6.1.6
Simplify each term.
Step 3.6.1.6.1
Apply the product rule to .
Step 3.6.1.6.2
Raise to the power of .
Step 3.6.1.6.3
Apply the product rule to .
Step 3.6.1.6.4
Raise to the power of .
Step 3.6.1.6.5
Multiply by .
Step 3.6.1.6.6
Multiply by .
Step 3.6.1.6.7
Multiply by .
Step 3.6.1.6.8
Raise to the power of .
Step 3.6.1.6.9
Multiply by .
Step 3.6.1.6.10
Raise to the power of .
Step 3.6.1.7
Apply the distributive property.
Step 3.6.1.8
Simplify.
Step 3.6.1.8.1
Multiply .
Step 3.6.1.8.1.1
Multiply by .
Step 3.6.1.8.1.2
Combine and .
Step 3.6.1.8.1.3
Combine and .
Step 3.6.1.8.2
Cancel the common factor of .
Step 3.6.1.8.2.1
Move the leading negative in into the numerator.
Step 3.6.1.8.2.2
Factor out of .
Step 3.6.1.8.2.3
Cancel the common factor.
Step 3.6.1.8.2.4
Rewrite the expression.
Step 3.6.1.8.3
Multiply by .
Step 3.6.1.8.4
Cancel the common factor of .
Step 3.6.1.8.4.1
Move the leading negative in into the numerator.
Step 3.6.1.8.4.2
Factor out of .
Step 3.6.1.8.4.3
Cancel the common factor.
Step 3.6.1.8.4.4
Rewrite the expression.
Step 3.6.1.8.5
Multiply by .
Step 3.6.1.8.6
Multiply .
Step 3.6.1.8.6.1
Multiply by .
Step 3.6.1.8.6.2
Combine and .
Step 3.6.1.9
Move the negative in front of the fraction.
Step 3.6.2
Combine the opposite terms in .
Step 3.6.2.1
Subtract from .
Step 3.6.2.2
Add and .
Step 3.6.3
Combine the numerators over the common denominator.
Step 3.6.4
Add and .
Step 3.6.5
Divide by .
Step 3.6.6
Add and .
Step 3.6.7
Subtract from .
Step 3.6.8
Apply the distributive property.
Step 3.6.9
Simplify.
Step 3.6.9.1
Cancel the common factor of .
Step 3.6.9.1.1
Factor out of .
Step 3.6.9.1.2
Cancel the common factor.
Step 3.6.9.1.3
Rewrite the expression.
Step 3.6.9.2
Cancel the common factor of .
Step 3.6.9.2.1
Factor out of .
Step 3.6.9.2.2
Cancel the common factor.
Step 3.6.9.2.3
Rewrite the expression.
Step 3.6.9.3
Cancel the common factor of .
Step 3.6.9.3.1
Factor out of .
Step 3.6.9.3.2
Cancel the common factor.
Step 3.6.9.3.3
Rewrite the expression.
Step 4
Step 4.1
Add and .
Step 4.2
Factor out of .
Step 4.2.1
Factor out of .
Step 4.2.2
Factor out of .
Step 4.2.3
Factor out of .
Step 4.2.4
Factor out of .
Step 4.2.5
Factor out of .
Step 4.3
Combine and .
Step 4.4
Divide by .
Step 4.5
Rewrite as .
Step 4.5.1
Rewrite as .
Step 4.5.2
Rewrite as .
Step 4.6
Pull terms out from under the radical.
Step 4.7
Simplify the expression.
Step 4.7.1
Apply the product rule to .
Step 4.7.2
Raise to the power of .
Step 5