Calculus Examples

Find the Symmetry f(x) = square root of x^4-16x^2
f(x)=x4-16x2f(x)=x416x2
Step 1
Determine if the function is odd, even, or neither in order to find the symmetry.
1. If odd, the function is symmetric about the origin.
2. If even, the function is symmetric about the y-axis.
Step 2
Simplify.
Tap for more steps...
Step 2.1
Factor x2x2 out of x4-16x2x416x2.
Tap for more steps...
Step 2.1.1
Factor x2x2 out of x4x4.
f(x)=x2x2-16x2f(x)=x2x216x2
Step 2.1.2
Factor x2x2 out of -16x216x2.
f(x)=x2x2+x2-16f(x)=x2x2+x216
Step 2.1.3
Factor x2x2 out of x2x2+x2-16x2x2+x216.
f(x)=x2(x2-16)f(x)=x2(x216)
f(x)=x2(x2-16)f(x)=x2(x216)
Step 2.2
Rewrite 1616 as 4242.
f(x)=x2(x2-42)f(x)=x2(x242)
Step 2.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=xa=x and b=4b=4.
f(x)=x2(x+4)(x-4)f(x)=x2(x+4)(x4)
Step 2.4
Rewrite x2(x+4)(x-4)x2(x+4)(x4) as x2((x+22)(x-4))x2((x+22)(x4)).
Tap for more steps...
Step 2.4.1
Rewrite 44 as 2222.
f(x)=x2(x+22)(x-4)f(x)=x2(x+22)(x4)
Step 2.4.2
Add parentheses.
f(x)=x2((x+22)(x-4))f(x)=x2((x+22)(x4))
f(x)=x2((x+22)(x-4))f(x)=x2((x+22)(x4))
Step 2.5
Pull terms out from under the radical.
f(x)=x(x+22)(x-4)f(x)=x(x+22)(x4)
Step 2.6
Raise 22 to the power of 22.
f(x)=x(x+4)(x-4)f(x)=x(x+4)(x4)
f(x)=x(x+4)(x-4)f(x)=x(x+4)(x4)
Step 3
Find f(-x)f(x).
Tap for more steps...
Step 3.1
Find f(-x)f(x) by substituting -xx for all occurrence of xx in f(x)f(x).
f(-x)=(-x)((-x)+4)((-x)-4)f(x)=(x)((x)+4)((x)4)
Step 3.2
Remove parentheses.
f(-x)=-x(-x+4)(-x-4)f(x)=x(x+4)(x4)
f(-x)=-x(-x+4)(-x-4)f(x)=x(x+4)(x4)
Step 4
A function is even if f(-x)=f(x)f(x)=f(x).
Tap for more steps...
Step 4.1
Check if f(-x)=f(x)f(x)=f(x).
Step 4.2
Since -x(-x+4)(-x-4)=x(x+4)(x-4)x(x+4)(x4)=x(x+4)(x4), the function is even.
The function is even
The function is even
Step 5
Since the function is not odd, it is not symmetric about the origin.
No origin symmetry
Step 6
Since the function is even, it is symmetric about the y-axis.
Y-axis symmetry
Step 7
 [x2  12  π  xdx ]  x2  12  π  xdx