Enter a problem...
Calculus Examples
f(x)=√x4-16x2f(x)=√x4−16x2
Step 1
Determine if the function is odd, even, or neither in order to find the symmetry.
1. If odd, the function is symmetric about the origin.
2. If even, the function is symmetric about the y-axis.
Step 2
Step 2.1
Factor x2x2 out of x4-16x2x4−16x2.
Step 2.1.1
Factor x2x2 out of x4x4.
f(x)=√x2x2-16x2f(x)=√x2x2−16x2
Step 2.1.2
Factor x2x2 out of -16x2−16x2.
f(x)=√x2x2+x2⋅-16f(x)=√x2x2+x2⋅−16
Step 2.1.3
Factor x2x2 out of x2x2+x2⋅-16x2x2+x2⋅−16.
f(x)=√x2(x2-16)f(x)=√x2(x2−16)
f(x)=√x2(x2-16)f(x)=√x2(x2−16)
Step 2.2
Rewrite 1616 as 4242.
f(x)=√x2(x2-42)f(x)=√x2(x2−42)
Step 2.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=xa=x and b=4b=4.
f(x)=√x2(x+4)(x-4)f(x)=√x2(x+4)(x−4)
Step 2.4
Rewrite x2(x+4)(x-4)x2(x+4)(x−4) as x2((x+22)(x-4))x2((x+22)(x−4)).
Step 2.4.1
Rewrite 44 as 2222.
f(x)=√x2(x+22)(x-4)f(x)=√x2(x+22)(x−4)
Step 2.4.2
Add parentheses.
f(x)=√x2((x+22)(x-4))f(x)=√x2((x+22)(x−4))
f(x)=√x2((x+22)(x-4))f(x)=√x2((x+22)(x−4))
Step 2.5
Pull terms out from under the radical.
f(x)=x√(x+22)(x-4)f(x)=x√(x+22)(x−4)
Step 2.6
Raise 22 to the power of 22.
f(x)=x√(x+4)(x-4)f(x)=x√(x+4)(x−4)
f(x)=x√(x+4)(x-4)f(x)=x√(x+4)(x−4)
Step 3
Step 3.1
Find f(-x)f(−x) by substituting -x−x for all occurrence of xx in f(x)f(x).
f(-x)=(-x)√((-x)+4)((-x)-4)f(−x)=(−x)√((−x)+4)((−x)−4)
Step 3.2
Remove parentheses.
f(-x)=-x√(-x+4)(-x-4)f(−x)=−x√(−x+4)(−x−4)
f(-x)=-x√(-x+4)(-x-4)f(−x)=−x√(−x+4)(−x−4)
Step 4
Step 4.1
Check if f(-x)=f(x)f(−x)=f(x).
Step 4.2
Since -x√(-x+4)(-x-4)=x√(x+4)(x-4)−x√(−x+4)(−x−4)=x√(x+4)(x−4), the function is even.
The function is even
The function is even
Step 5
Since the function is not odd, it is not symmetric about the origin.
No origin symmetry
Step 6
Since the function is even, it is symmetric about the y-axis.
Y-axis symmetry
Step 7