Enter a problem...
Calculus Examples
f(x)=x2x2-1f(x)=x2x2−1
Step 1
Determine if the function is odd, even, or neither in order to find the symmetry.
1. If odd, the function is symmetric about the origin.
2. If even, the function is symmetric about the y-axis.
Step 2
Step 2.1
Rewrite 11 as 1212.
f(x)=x2x2-12f(x)=x2x2−12
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=xa=x and b=1b=1.
f(x)=x2(x+1)(x-1)f(x)=x2(x+1)(x−1)
f(x)=x2(x+1)(x-1)f(x)=x2(x+1)(x−1)
Step 3
Step 3.1
Find f(-x)f(−x) by substituting -x−x for all occurrence of xx in f(x)f(x).
f(-x)=(-x)2((-x)+1)((-x)-1)f(−x)=(−x)2((−x)+1)((−x)−1)
Step 3.2
Simplify the numerator.
Step 3.2.1
Apply the product rule to -x−x.
f(-x)=(-1)2x2(-x+1)(-x-1)f(−x)=(−1)2x2(−x+1)(−x−1)
Step 3.2.2
Raise -1−1 to the power of 22.
f(-x)=1x2(-x+1)(-x-1)f(−x)=1x2(−x+1)(−x−1)
Step 3.2.3
Multiply x2x2 by 11.
f(-x)=x2(-x+1)(-x-1)f(−x)=x2(−x+1)(−x−1)
f(-x)=x2(-x+1)(-x-1)f(−x)=x2(−x+1)(−x−1)
Step 3.3
Simplify with factoring out.
Step 3.3.1
Factor -1−1 out of -x−x.
f(-x)=x2(-(x)+1)(-x-1)f(−x)=x2(−(x)+1)(−x−1)
Step 3.3.2
Rewrite 11 as -1(-1)−1(−1).
f(-x)=x2(-(x)-1⋅-1)(-x-1)f(−x)=x2(−(x)−1⋅−1)(−x−1)
Step 3.3.3
Factor -1−1 out of -(x)-1(-1)−(x)−1(−1).
f(-x)=x2-(x-1)(-x-1)f(−x)=x2−(x−1)(−x−1)
Step 3.3.4
Rewrite -(x-1)−(x−1) as -1(x-1)−1(x−1).
f(-x)=x2-1(x-1)(-x-1)f(−x)=x2−1(x−1)(−x−1)
Step 3.3.5
Factor -1−1 out of -x−x.
f(-x)=x2-1(x-1)(-(x)-1)f(−x)=x2−1(x−1)(−(x)−1)
Step 3.3.6
Rewrite -1−1 as -1(1)−1(1).
f(-x)=x2-1(x-1)(-(x)-1⋅1)f(−x)=x2−1(x−1)(−(x)−1⋅1)
Step 3.3.7
Factor -1−1 out of -(x)-1(1)−(x)−1(1).
f(-x)=x2-1(x-1)(-(x+1))f(−x)=x2−1(x−1)(−(x+1))
Step 3.3.8
Simplify the expression.
Step 3.3.8.1
Rewrite -(x+1)−(x+1) as -1(x+1)−1(x+1).
f(-x)=x2-1(x-1)(-1(x+1))f(−x)=x2−1(x−1)(−1(x+1))
Step 3.3.8.2
Multiply -1−1 by -1−1.
f(-x)=x21(x-1)(x+1)f(−x)=x21(x−1)(x+1)
Step 3.3.8.3
Multiply x-1x−1 by 11.
f(-x)=x2(x-1)(x+1)f(−x)=x2(x−1)(x+1)
f(-x)=x2(x-1)(x+1)f(−x)=x2(x−1)(x+1)
f(-x)=x2(x-1)(x+1)f(−x)=x2(x−1)(x+1)
f(-x)=x2(x-1)(x+1)f(−x)=x2(x−1)(x+1)
Step 4
Step 4.1
Check if f(-x)=f(x)f(−x)=f(x).
Step 4.2
Since x2(x-1)(x+1)x2(x−1)(x+1)≠≠x2(x+1)(x-1)x2(x+1)(x−1), the function is not even.
The function is not even
The function is not even
Step 5
Step 5.1
Multiply -1−1 by x2(x+1)(x-1)x2(x+1)(x−1).
-f(x)=-x2(x+1)(x-1)−f(x)=−x2(x+1)(x−1)
Step 5.2
Since x2(x-1)(x+1)x2(x−1)(x+1)≠≠-x2(x+1)(x-1)−x2(x+1)(x−1), the function is not odd.
The function is not odd
The function is not odd
Step 6
The function is neither odd nor even
Step 7
Since the function is not odd, it is not symmetric about the origin.
No origin symmetry
Step 8
Since the function is not even, it is not symmetric about the y-axis.
No y-axis symmetry
Step 9
Since the function is neither odd nor even, there is no origin / y-axis symmetry.
Function is not symmetric
Step 10