Calculus Examples

Find the Symmetry f(x)=(x^2)/(x^2-1)
f(x)=x2x2-1f(x)=x2x21
Step 1
Determine if the function is odd, even, or neither in order to find the symmetry.
1. If odd, the function is symmetric about the origin.
2. If even, the function is symmetric about the y-axis.
Step 2
Simplify the denominator.
Tap for more steps...
Step 2.1
Rewrite 11 as 1212.
f(x)=x2x2-12f(x)=x2x212
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=xa=x and b=1b=1.
f(x)=x2(x+1)(x-1)f(x)=x2(x+1)(x1)
f(x)=x2(x+1)(x-1)f(x)=x2(x+1)(x1)
Step 3
Find f(-x)f(x).
Tap for more steps...
Step 3.1
Find f(-x)f(x) by substituting -xx for all occurrence of xx in f(x)f(x).
f(-x)=(-x)2((-x)+1)((-x)-1)f(x)=(x)2((x)+1)((x)1)
Step 3.2
Simplify the numerator.
Tap for more steps...
Step 3.2.1
Apply the product rule to -xx.
f(-x)=(-1)2x2(-x+1)(-x-1)f(x)=(1)2x2(x+1)(x1)
Step 3.2.2
Raise -11 to the power of 22.
f(-x)=1x2(-x+1)(-x-1)f(x)=1x2(x+1)(x1)
Step 3.2.3
Multiply x2x2 by 11.
f(-x)=x2(-x+1)(-x-1)f(x)=x2(x+1)(x1)
f(-x)=x2(-x+1)(-x-1)f(x)=x2(x+1)(x1)
Step 3.3
Simplify with factoring out.
Tap for more steps...
Step 3.3.1
Factor -11 out of -xx.
f(-x)=x2(-(x)+1)(-x-1)f(x)=x2((x)+1)(x1)
Step 3.3.2
Rewrite 11 as -1(-1)1(1).
f(-x)=x2(-(x)-1-1)(-x-1)f(x)=x2((x)11)(x1)
Step 3.3.3
Factor -11 out of -(x)-1(-1)(x)1(1).
f(-x)=x2-(x-1)(-x-1)f(x)=x2(x1)(x1)
Step 3.3.4
Rewrite -(x-1)(x1) as -1(x-1)1(x1).
f(-x)=x2-1(x-1)(-x-1)f(x)=x21(x1)(x1)
Step 3.3.5
Factor -11 out of -xx.
f(-x)=x2-1(x-1)(-(x)-1)f(x)=x21(x1)((x)1)
Step 3.3.6
Rewrite -11 as -1(1)1(1).
f(-x)=x2-1(x-1)(-(x)-11)f(x)=x21(x1)((x)11)
Step 3.3.7
Factor -11 out of -(x)-1(1)(x)1(1).
f(-x)=x2-1(x-1)(-(x+1))f(x)=x21(x1)((x+1))
Step 3.3.8
Simplify the expression.
Tap for more steps...
Step 3.3.8.1
Rewrite -(x+1)(x+1) as -1(x+1)1(x+1).
f(-x)=x2-1(x-1)(-1(x+1))f(x)=x21(x1)(1(x+1))
Step 3.3.8.2
Multiply -11 by -11.
f(-x)=x21(x-1)(x+1)f(x)=x21(x1)(x+1)
Step 3.3.8.3
Multiply x-1x1 by 11.
f(-x)=x2(x-1)(x+1)f(x)=x2(x1)(x+1)
f(-x)=x2(x-1)(x+1)f(x)=x2(x1)(x+1)
f(-x)=x2(x-1)(x+1)f(x)=x2(x1)(x+1)
f(-x)=x2(x-1)(x+1)f(x)=x2(x1)(x+1)
Step 4
A function is even if f(-x)=f(x)f(x)=f(x).
Tap for more steps...
Step 4.1
Check if f(-x)=f(x)f(x)=f(x).
Step 4.2
Since x2(x-1)(x+1)x2(x1)(x+1)x2(x+1)(x-1)x2(x+1)(x1), the function is not even.
The function is not even
The function is not even
Step 5
A function is odd if f(-x)=-f(x)f(x)=f(x).
Tap for more steps...
Step 5.1
Multiply -11 by x2(x+1)(x-1)x2(x+1)(x1).
-f(x)=-x2(x+1)(x-1)f(x)=x2(x+1)(x1)
Step 5.2
Since x2(x-1)(x+1)x2(x1)(x+1)-x2(x+1)(x-1)x2(x+1)(x1), the function is not odd.
The function is not odd
The function is not odd
Step 6
The function is neither odd nor even
Step 7
Since the function is not odd, it is not symmetric about the origin.
No origin symmetry
Step 8
Since the function is not even, it is not symmetric about the y-axis.
No y-axis symmetry
Step 9
Since the function is neither odd nor even, there is no origin / y-axis symmetry.
Function is not symmetric
Step 10
 [x2  12  π  xdx ]  x2  12  π  xdx