Calculus Examples

Use the Limit Definition to Find the Derivative y=5.0+0.6x-0.30x^2
Step 1
Consider the limit definition of the derivative.
Step 2
Find the components of the definition.
Tap for more steps...
Step 2.1
Evaluate the function at .
Tap for more steps...
Step 2.1.1
Replace the variable with in the expression.
Step 2.1.2
Simplify the result.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Apply the distributive property.
Step 2.1.2.1.2
Rewrite as .
Step 2.1.2.1.3
Expand using the FOIL Method.
Tap for more steps...
Step 2.1.2.1.3.1
Apply the distributive property.
Step 2.1.2.1.3.2
Apply the distributive property.
Step 2.1.2.1.3.3
Apply the distributive property.
Step 2.1.2.1.4
Simplify and combine like terms.
Tap for more steps...
Step 2.1.2.1.4.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.4.1.1
Multiply by .
Step 2.1.2.1.4.1.2
Multiply by .
Step 2.1.2.1.4.2
Add and .
Tap for more steps...
Step 2.1.2.1.4.2.1
Reorder and .
Step 2.1.2.1.4.2.2
Add and .
Step 2.1.2.1.5
Apply the distributive property.
Step 2.1.2.1.6
Multiply by .
Step 2.1.2.2
The final answer is .
Step 2.2
Reorder.
Tap for more steps...
Step 2.2.1
Move .
Step 2.2.2
Move .
Step 2.2.3
Move .
Step 2.2.4
Move .
Step 2.2.5
Reorder and .
Step 2.3
Find the components of the definition.
Step 3
Plug in the components.
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Factor out of .
Tap for more steps...
Step 4.1.1.1
Reorder the expression.
Tap for more steps...
Step 4.1.1.1.1
Move .
Step 4.1.1.1.2
Move .
Step 4.1.1.1.3
Reorder and .
Step 4.1.1.2
Factor out of .
Step 4.1.1.3
Factor out of .
Step 4.1.1.4
Factor out of .
Step 4.1.1.5
Factor out of .
Step 4.1.1.6
Factor out of .
Step 4.1.1.7
Factor out of .
Step 4.1.1.8
Factor out of .
Step 4.1.1.9
Factor out of .
Step 4.1.1.10
Factor out of .
Step 4.1.1.11
Factor out of .
Step 4.1.1.12
Factor out of .
Step 4.1.1.13
Factor out of .
Step 4.1.1.14
Factor out of .
Step 4.1.2
Apply the distributive property.
Step 4.1.3
Simplify.
Tap for more steps...
Step 4.1.3.1
Multiply by .
Step 4.1.3.2
Multiply by .
Step 4.1.3.3
Multiply by .
Step 4.1.4
Add and .
Step 4.1.5
Subtract from .
Step 4.1.6
Subtract from .
Step 4.1.7
Add and .
Step 4.1.8
Rewrite in a factored form.
Tap for more steps...
Step 4.1.8.1
Factor out of .
Tap for more steps...
Step 4.1.8.1.1
Factor out of .
Step 4.1.8.1.2
Factor out of .
Step 4.1.8.1.3
Factor out of .
Step 4.1.8.1.4
Factor out of .
Step 4.1.8.1.5
Factor out of .
Step 4.1.8.1.6
Factor out of .
Step 4.1.8.1.7
Factor out of .
Step 4.1.8.1.8
Factor out of .
Step 4.1.8.1.9
Factor out of .
Step 4.1.8.2
Multiply by .
Step 4.1.8.3
Multiply by .
Step 4.1.8.4
Add and .
Step 4.1.8.5
Add and .
Step 4.1.8.6
Factor out of .
Tap for more steps...
Step 4.1.8.6.1
Factor out of .
Step 4.1.8.6.2
Factor out of .
Step 4.1.8.6.3
Factor out of .
Step 4.1.8.6.4
Factor out of .
Step 4.1.8.6.5
Factor out of .
Step 4.1.9
Multiply by .
Step 4.2
Simplify terms.
Tap for more steps...
Step 4.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
Step 4.2.1.2
Divide by .
Step 4.2.2
Apply the distributive property.
Step 4.3
Simplify.
Tap for more steps...
Step 4.3.1
Multiply by .
Step 4.3.2
Multiply by .
Step 4.3.3
Multiply by .
Step 4.4
Reorder and .
Step 5
Evaluate the limit.
Tap for more steps...
Step 5.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 5.2
Evaluate the limit of which is constant as approaches .
Step 5.3
Move the term outside of the limit because it is constant with respect to .
Step 5.4
Evaluate the limit of which is constant as approaches .
Step 6
Evaluate the limit of by plugging in for .
Step 7
Simplify the answer.
Tap for more steps...
Step 7.1
Multiply by .
Step 7.2
Add and .
Step 8