Enter a problem...
Calculus Examples
Step 1
This is the trigonometric form of a complex number where is the modulus and is the angle created on the complex plane.
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
where
Step 3
Substitute the actual values of and .
Step 4
Pull terms out from under the radical, assuming positive real numbers.
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
Step 6
Since the argument is undefined and is positive, the angle of the point on the complex plane is .
Step 7
Substitute the values of and .