Enter a problem...
Calculus Examples
(3i4-2i2+5i-1)-(5i3+4i2-i+2)(3i4−2i2+5i−1)−(5i3+4i2−i+2)
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Rewrite i4i4 as 11.
Step 1.1.1.1
Rewrite i4i4 as (i2)2(i2)2.
ddx[3(i2)2-2i2+5i-1-(5i3+4i2-i+2)]ddx[3(i2)2−2i2+5i−1−(5i3+4i2−i+2)]
Step 1.1.1.2
Rewrite i2i2 as -1−1.
ddx[3(-1)2-2i2+5i-1-(5i3+4i2-i+2)]ddx[3(−1)2−2i2+5i−1−(5i3+4i2−i+2)]
Step 1.1.1.3
Raise -1−1 to the power of 22.
ddx[3⋅1-2i2+5i-1-(5i3+4i2-i+2)]ddx[3⋅1−2i2+5i−1−(5i3+4i2−i+2)]
ddx[3⋅1-2i2+5i-1-(5i3+4i2-i+2)]ddx[3⋅1−2i2+5i−1−(5i3+4i2−i+2)]
Step 1.1.2
Rewrite i2i2 as -1−1.
ddx[3⋅1-2⋅-1+5i-1-(5i3+4i2-i+2)]ddx[3⋅1−2⋅−1+5i−1−(5i3+4i2−i+2)]
Step 1.1.3
Differentiate using the Sum Rule.
Step 1.1.3.1
Simplify each term.
Step 1.1.3.1.1
Factor out i2i2.
ddx[3⋅1-2⋅-1+5i-1-(5(i2⋅i)+4i2-i+2)]ddx[3⋅1−2⋅−1+5i−1−(5(i2⋅i)+4i2−i+2)]
Step 1.1.3.1.2
Rewrite i2i2 as -1−1.
ddx[3⋅1-2⋅-1+5i-1-(5(-1⋅i)+4i2-i+2)]ddx[3⋅1−2⋅−1+5i−1−(5(−1⋅i)+4i2−i+2)]
Step 1.1.3.1.3
Rewrite -1i−1i as -i−i.
ddx[3⋅1-2⋅-1+5i-1-(5(-i)+4i2-i+2)]ddx[3⋅1−2⋅−1+5i−1−(5(−i)+4i2−i+2)]
Step 1.1.3.1.4
Multiply -1−1 by 55.
ddx[3⋅1-2⋅-1+5i-1-(-5i+4i2-i+2)]ddx[3⋅1−2⋅−1+5i−1−(−5i+4i2−i+2)]
Step 1.1.3.1.5
Rewrite i2i2 as -1−1.
ddx[3⋅1-2⋅-1+5i-1-(-5i+4⋅-1-i+2)]ddx[3⋅1−2⋅−1+5i−1−(−5i+4⋅−1−i+2)]
Step 1.1.3.1.6
Multiply 44 by -1−1.
ddx[3⋅1-2⋅-1+5i-1-(-5i-4-i+2)]ddx[3⋅1−2⋅−1+5i−1−(−5i−4−i+2)]
ddx[3⋅1-2⋅-1+5i-1-(-5i-4-i+2)]ddx[3⋅1−2⋅−1+5i−1−(−5i−4−i+2)]
Step 1.1.3.2
Simplify by adding terms.
Step 1.1.3.2.1
Subtract ii from -5i−5i.
ddx[3⋅1-2⋅-1+5i-1-(-4-6i+2)]ddx[3⋅1−2⋅−1+5i−1−(−4−6i+2)]
Step 1.1.3.2.2
Add -4−4 and 22.
ddx[3⋅1-2⋅-1+5i-1-(-2-6i)]ddx[3⋅1−2⋅−1+5i−1−(−2−6i)]
ddx[3⋅1-2⋅-1+5i-1-(-2-6i)]ddx[3⋅1−2⋅−1+5i−1−(−2−6i)]
Step 1.1.3.3
By the Sum Rule, the derivative of 3⋅1-2⋅-1+5i-1-(-2-6i)3⋅1−2⋅−1+5i−1−(−2−6i) with respect to xx is ddx[3⋅1]+ddx[-2⋅-1]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]ddx[3⋅1]+ddx[−2⋅−1]+ddx[5i]+ddx[−1]+ddx[−(−2−6i)].
ddx[3⋅1]+ddx[-2⋅-1]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]ddx[3⋅1]+ddx[−2⋅−1]+ddx[5i]+ddx[−1]+ddx[−(−2−6i)]
ddx[3⋅1]+ddx[-2⋅-1]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]ddx[3⋅1]+ddx[−2⋅−1]+ddx[5i]+ddx[−1]+ddx[−(−2−6i)]
Step 1.1.4
Evaluate ddx[3⋅1]ddx[3⋅1].
Step 1.1.4.1
Multiply 33 by 11.
ddx[3]+ddx[-2⋅-1]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]ddx[3]+ddx[−2⋅−1]+ddx[5i]+ddx[−1]+ddx[−(−2−6i)]
Step 1.1.4.2
Since 33 is constant with respect to xx, the derivative of 33 with respect to xx is 00.
0+ddx[-2⋅-1]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]0+ddx[−2⋅−1]+ddx[5i]+ddx[−1]+ddx[−(−2−6i)]
0+ddx[-2⋅-1]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]0+ddx[−2⋅−1]+ddx[5i]+ddx[−1]+ddx[−(−2−6i)]
Step 1.1.5
Evaluate ddx[-2⋅-1]ddx[−2⋅−1].
Step 1.1.5.1
Multiply -2−2 by -1−1.
0+ddx[2]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]0+ddx[2]+ddx[5i]+ddx[−1]+ddx[−(−2−6i)]
Step 1.1.5.2
Since 22 is constant with respect to xx, the derivative of 22 with respect to xx is 00.
0+0+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]0+0+ddx[5i]+ddx[−1]+ddx[−(−2−6i)]
0+0+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]0+0+ddx[5i]+ddx[−1]+ddx[−(−2−6i)]
Step 1.1.6
Differentiate using the Constant Rule.
Step 1.1.6.1
Since 5i5i is constant with respect to xx, the derivative of 5i5i with respect to xx is 00.
0+0+0+ddx[-1]+ddx[-(-2-6i)]0+0+0+ddx[−1]+ddx[−(−2−6i)]
Step 1.1.6.2
Since -1−1 is constant with respect to xx, the derivative of -1−1 with respect to xx is 00.
0+0+0+0+ddx[-(-2-6i)]0+0+0+0+ddx[−(−2−6i)]
Step 1.1.6.3
Since -(-2-6i)−(−2−6i) is constant with respect to xx, the derivative of -(-2-6i)−(−2−6i) with respect to xx is 00.
0+0+0+0+00+0+0+0+0
0+0+0+0+00+0+0+0+0
Step 1.1.7
Combine terms.
Step 1.1.7.1
Add 00 and 00.
0+0+0+00+0+0+0
Step 1.1.7.2
Add 00 and 00.
0+0+00+0+0
Step 1.1.7.3
Add 00 and 00.
0+00+0
Step 1.1.7.4
Add 00 and 00.
f′(x)=0
f′(x)=0
f′(x)=0
Step 1.2
The first derivative of f(x) with respect to x is 0.
0
0
Step 2
Step 2.1
Set the first derivative equal to 0.
0=0
Step 2.2
Since 0=0, the equation will always be true.
Always true
Always true
Step 3
There are no values of x in the domain of the original problem where the derivative is 0 or undefined.
No critical points found