Calculus Examples

Find the Critical Points (3i^4-2i^2+5i-1)-(5i^3+4i^2-i+2)
(3i4-2i2+5i-1)-(5i3+4i2-i+2)(3i42i2+5i1)(5i3+4i2i+2)
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Rewrite i4i4 as 11.
Tap for more steps...
Step 1.1.1.1
Rewrite i4i4 as (i2)2(i2)2.
ddx[3(i2)2-2i2+5i-1-(5i3+4i2-i+2)]ddx[3(i2)22i2+5i1(5i3+4i2i+2)]
Step 1.1.1.2
Rewrite i2i2 as -11.
ddx[3(-1)2-2i2+5i-1-(5i3+4i2-i+2)]ddx[3(1)22i2+5i1(5i3+4i2i+2)]
Step 1.1.1.3
Raise -11 to the power of 22.
ddx[31-2i2+5i-1-(5i3+4i2-i+2)]ddx[312i2+5i1(5i3+4i2i+2)]
ddx[31-2i2+5i-1-(5i3+4i2-i+2)]ddx[312i2+5i1(5i3+4i2i+2)]
Step 1.1.2
Rewrite i2i2 as -11.
ddx[31-2-1+5i-1-(5i3+4i2-i+2)]ddx[3121+5i1(5i3+4i2i+2)]
Step 1.1.3
Differentiate using the Sum Rule.
Tap for more steps...
Step 1.1.3.1
Simplify each term.
Tap for more steps...
Step 1.1.3.1.1
Factor out i2i2.
ddx[31-2-1+5i-1-(5(i2i)+4i2-i+2)]ddx[3121+5i1(5(i2i)+4i2i+2)]
Step 1.1.3.1.2
Rewrite i2i2 as -11.
ddx[31-2-1+5i-1-(5(-1i)+4i2-i+2)]ddx[3121+5i1(5(1i)+4i2i+2)]
Step 1.1.3.1.3
Rewrite -1i1i as -ii.
ddx[31-2-1+5i-1-(5(-i)+4i2-i+2)]ddx[3121+5i1(5(i)+4i2i+2)]
Step 1.1.3.1.4
Multiply -11 by 55.
ddx[31-2-1+5i-1-(-5i+4i2-i+2)]ddx[3121+5i1(5i+4i2i+2)]
Step 1.1.3.1.5
Rewrite i2i2 as -11.
ddx[31-2-1+5i-1-(-5i+4-1-i+2)]ddx[3121+5i1(5i+41i+2)]
Step 1.1.3.1.6
Multiply 44 by -11.
ddx[31-2-1+5i-1-(-5i-4-i+2)]ddx[3121+5i1(5i4i+2)]
ddx[31-2-1+5i-1-(-5i-4-i+2)]ddx[3121+5i1(5i4i+2)]
Step 1.1.3.2
Simplify by adding terms.
Tap for more steps...
Step 1.1.3.2.1
Subtract ii from -5i5i.
ddx[31-2-1+5i-1-(-4-6i+2)]ddx[3121+5i1(46i+2)]
Step 1.1.3.2.2
Add -44 and 22.
ddx[31-2-1+5i-1-(-2-6i)]ddx[3121+5i1(26i)]
ddx[31-2-1+5i-1-(-2-6i)]ddx[3121+5i1(26i)]
Step 1.1.3.3
By the Sum Rule, the derivative of 31-2-1+5i-1-(-2-6i)3121+5i1(26i) with respect to xx is ddx[31]+ddx[-2-1]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]ddx[31]+ddx[21]+ddx[5i]+ddx[1]+ddx[(26i)].
ddx[31]+ddx[-2-1]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]ddx[31]+ddx[21]+ddx[5i]+ddx[1]+ddx[(26i)]
ddx[31]+ddx[-2-1]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]ddx[31]+ddx[21]+ddx[5i]+ddx[1]+ddx[(26i)]
Step 1.1.4
Evaluate ddx[31]ddx[31].
Tap for more steps...
Step 1.1.4.1
Multiply 33 by 11.
ddx[3]+ddx[-2-1]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]ddx[3]+ddx[21]+ddx[5i]+ddx[1]+ddx[(26i)]
Step 1.1.4.2
Since 33 is constant with respect to xx, the derivative of 33 with respect to xx is 00.
0+ddx[-2-1]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]0+ddx[21]+ddx[5i]+ddx[1]+ddx[(26i)]
0+ddx[-2-1]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]0+ddx[21]+ddx[5i]+ddx[1]+ddx[(26i)]
Step 1.1.5
Evaluate ddx[-2-1]ddx[21].
Tap for more steps...
Step 1.1.5.1
Multiply -22 by -11.
0+ddx[2]+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]0+ddx[2]+ddx[5i]+ddx[1]+ddx[(26i)]
Step 1.1.5.2
Since 22 is constant with respect to xx, the derivative of 22 with respect to xx is 00.
0+0+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]0+0+ddx[5i]+ddx[1]+ddx[(26i)]
0+0+ddx[5i]+ddx[-1]+ddx[-(-2-6i)]0+0+ddx[5i]+ddx[1]+ddx[(26i)]
Step 1.1.6
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.6.1
Since 5i5i is constant with respect to xx, the derivative of 5i5i with respect to xx is 00.
0+0+0+ddx[-1]+ddx[-(-2-6i)]0+0+0+ddx[1]+ddx[(26i)]
Step 1.1.6.2
Since -11 is constant with respect to xx, the derivative of -11 with respect to xx is 00.
0+0+0+0+ddx[-(-2-6i)]0+0+0+0+ddx[(26i)]
Step 1.1.6.3
Since -(-2-6i)(26i) is constant with respect to xx, the derivative of -(-2-6i)(26i) with respect to xx is 00.
0+0+0+0+00+0+0+0+0
0+0+0+0+00+0+0+0+0
Step 1.1.7
Combine terms.
Tap for more steps...
Step 1.1.7.1
Add 00 and 00.
0+0+0+00+0+0+0
Step 1.1.7.2
Add 00 and 00.
0+0+00+0+0
Step 1.1.7.3
Add 00 and 00.
0+00+0
Step 1.1.7.4
Add 00 and 00.
f(x)=0
f(x)=0
f(x)=0
Step 1.2
The first derivative of f(x) with respect to x is 0.
0
0
Step 2
Set the first derivative equal to 0 then solve the equation 0=0.
Tap for more steps...
Step 2.1
Set the first derivative equal to 0.
0=0
Step 2.2
Since 0=0, the equation will always be true.
Always true
Always true
Step 3
There are no values of x in the domain of the original problem where the derivative is 0 or undefined.
No critical points found
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]