Calculus Examples

Find the Critical Points 10sec(x)+5tan(x)
10sec(x)+5tan(x)10sec(x)+5tan(x)
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
By the Sum Rule, the derivative of 10sec(x)+5tan(x)10sec(x)+5tan(x) with respect to xx is ddx[10sec(x)]+ddx[5tan(x)]ddx[10sec(x)]+ddx[5tan(x)].
ddx[10sec(x)]+ddx[5tan(x)]ddx[10sec(x)]+ddx[5tan(x)]
Step 1.1.2
Evaluate ddx[10sec(x)]ddx[10sec(x)].
Tap for more steps...
Step 1.1.2.1
Since 1010 is constant with respect to xx, the derivative of 10sec(x)10sec(x) with respect to xx is 10ddx[sec(x)]10ddx[sec(x)].
10ddx[sec(x)]+ddx[5tan(x)]10ddx[sec(x)]+ddx[5tan(x)]
Step 1.1.2.2
The derivative of sec(x)sec(x) with respect to xx is sec(x)tan(x)sec(x)tan(x).
10sec(x)tan(x)+ddx[5tan(x)]10sec(x)tan(x)+ddx[5tan(x)]
10sec(x)tan(x)+ddx[5tan(x)]10sec(x)tan(x)+ddx[5tan(x)]
Step 1.1.3
Evaluate ddx[5tan(x)]ddx[5tan(x)].
Tap for more steps...
Step 1.1.3.1
Since 55 is constant with respect to xx, the derivative of 5tan(x)5tan(x) with respect to xx is 5ddx[tan(x)]5ddx[tan(x)].
10sec(x)tan(x)+5ddx[tan(x)]10sec(x)tan(x)+5ddx[tan(x)]
Step 1.1.3.2
The derivative of tan(x)tan(x) with respect to xx is sec2(x)sec2(x).
f(x)=10sec(x)tan(x)+5sec2(x)
f(x)=10sec(x)tan(x)+5sec2(x)
f(x)=10sec(x)tan(x)+5sec2(x)
Step 1.2
The first derivative of f(x) with respect to x is 10sec(x)tan(x)+5sec2(x).
10sec(x)tan(x)+5sec2(x)
10sec(x)tan(x)+5sec2(x)
Step 2
Set the first derivative equal to 0 then solve the equation 10sec(x)tan(x)+5sec2(x)=0.
Tap for more steps...
Step 2.1
Set the first derivative equal to 0.
10sec(x)tan(x)+5sec2(x)=0
Step 2.2
Graph each side of the equation. The solution is the x-value of the point of intersection.
x=7π6+2πn,11π6+2πn, for any integer n
x=7π6+2πn,11π6+2πn, for any integer n
Step 3
Find the values where the derivative is undefined.
Tap for more steps...
Step 3.1
Set the argument in sec(x) equal to π2+πn to find where the expression is undefined.
x=π2+πn, for any integer n
Step 3.2
The equation is undefined where the denominator equals 0, the argument of a square root is less than 0, or the argument of a logarithm is less than or equal to 0.
{x|x=π2+πn}n, for any integer n
{x|x=π2+πn}n, for any integer n
Step 4
Evaluate 10sec(x)+5tan(x) at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 4.1
Evaluate at x=7π6.
Tap for more steps...
Step 4.1.1
Substitute 7π6 for x.
10sec(7π6)+5tan(7π6)
Step 4.1.2
Simplify.
Tap for more steps...
Step 4.1.2.1
Simplify each term.
Tap for more steps...
Step 4.1.2.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because secant is negative in the third quadrant.
10(-sec(π6))+5tan(7π6)
Step 4.1.2.1.2
The exact value of sec(π6) is 23.
10(-23)+5tan(7π6)
Step 4.1.2.1.3
Multiply 23 by 33.
10(-(2333))+5tan(7π6)
Step 4.1.2.1.4
Combine and simplify the denominator.
Tap for more steps...
Step 4.1.2.1.4.1
Multiply 23 by 33.
10(-2333)+5tan(7π6)
Step 4.1.2.1.4.2
Raise 3 to the power of 1.
10(-23313)+5tan(7π6)
Step 4.1.2.1.4.3
Raise 3 to the power of 1.
10(-233131)+5tan(7π6)
Step 4.1.2.1.4.4
Use the power rule aman=am+n to combine exponents.
10(-2331+1)+5tan(7π6)
Step 4.1.2.1.4.5
Add 1 and 1.
10(-2332)+5tan(7π6)
Step 4.1.2.1.4.6
Rewrite 32 as 3.
Tap for more steps...
Step 4.1.2.1.4.6.1
Use nax=axn to rewrite 3 as 312.
10(-23(312)2)+5tan(7π6)
Step 4.1.2.1.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
10(-233122)+5tan(7π6)
Step 4.1.2.1.4.6.3
Combine 12 and 2.
10(-23322)+5tan(7π6)
Step 4.1.2.1.4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.1.2.1.4.6.4.1
Cancel the common factor.
10(-23322)+5tan(7π6)
Step 4.1.2.1.4.6.4.2
Rewrite the expression.
10(-2331)+5tan(7π6)
10(-2331)+5tan(7π6)
Step 4.1.2.1.4.6.5
Evaluate the exponent.
10(-233)+5tan(7π6)
10(-233)+5tan(7π6)
10(-233)+5tan(7π6)
Step 4.1.2.1.5
Multiply 10(-233).
Tap for more steps...
Step 4.1.2.1.5.1
Multiply -1 by 10.
-10233+5tan(7π6)
Step 4.1.2.1.5.2
Combine -10 and 233.
-10(23)3+5tan(7π6)
Step 4.1.2.1.5.3
Multiply 2 by -10.
-2033+5tan(7π6)
-2033+5tan(7π6)
Step 4.1.2.1.6
Move the negative in front of the fraction.
-2033+5tan(7π6)
Step 4.1.2.1.7
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
-2033+5tan(π6)
Step 4.1.2.1.8
The exact value of tan(π6) is 33.
-2033+533
Step 4.1.2.1.9
Combine 5 and 33.
-2033+533
-2033+533
Step 4.1.2.2
Simplify terms.
Tap for more steps...
Step 4.1.2.2.1
Combine the numerators over the common denominator.
-203+533
Step 4.1.2.2.2
Add -203 and 53.
-1533
Step 4.1.2.2.3
Cancel the common factor of -15 and 3.
Tap for more steps...
Step 4.1.2.2.3.1
Factor 3 out of -153.
3(-53)3
Step 4.1.2.2.3.2
Cancel the common factors.
Tap for more steps...
Step 4.1.2.2.3.2.1
Factor 3 out of 3.
3(-53)3(1)
Step 4.1.2.2.3.2.2
Cancel the common factor.
3(-53)31
Step 4.1.2.2.3.2.3
Rewrite the expression.
-531
Step 4.1.2.2.3.2.4
Divide -53 by 1.
-53
-53
-53
-53
-53
-53
Step 4.2
Evaluate at x=11π6.
Tap for more steps...
Step 4.2.1
Substitute 11π6 for x.
10sec(11π6)+5tan(11π6)
Step 4.2.2
Simplify.
Tap for more steps...
Step 4.2.2.1
Simplify each term.
Tap for more steps...
Step 4.2.2.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
10sec(π6)+5tan(11π6)
Step 4.2.2.1.2
The exact value of sec(π6) is 23.
1023+5tan(11π6)
Step 4.2.2.1.3
Multiply 23 by 33.
10(2333)+5tan(11π6)
Step 4.2.2.1.4
Combine and simplify the denominator.
Tap for more steps...
Step 4.2.2.1.4.1
Multiply 23 by 33.
102333+5tan(11π6)
Step 4.2.2.1.4.2
Raise 3 to the power of 1.
1023313+5tan(11π6)
Step 4.2.2.1.4.3
Raise 3 to the power of 1.
10233131+5tan(11π6)
Step 4.2.2.1.4.4
Use the power rule aman=am+n to combine exponents.
102331+1+5tan(11π6)
Step 4.2.2.1.4.5
Add 1 and 1.
102332+5tan(11π6)
Step 4.2.2.1.4.6
Rewrite 32 as 3.
Tap for more steps...
Step 4.2.2.1.4.6.1
Use nax=axn to rewrite 3 as 312.
1023(312)2+5tan(11π6)
Step 4.2.2.1.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
10233122+5tan(11π6)
Step 4.2.2.1.4.6.3
Combine 12 and 2.
1023322+5tan(11π6)
Step 4.2.2.1.4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.2.1.4.6.4.1
Cancel the common factor.
1023322+5tan(11π6)
Step 4.2.2.1.4.6.4.2
Rewrite the expression.
102331+5tan(11π6)
102331+5tan(11π6)
Step 4.2.2.1.4.6.5
Evaluate the exponent.
10233+5tan(11π6)
10233+5tan(11π6)
10233+5tan(11π6)
Step 4.2.2.1.5
Multiply 10233.
Tap for more steps...
Step 4.2.2.1.5.1
Combine 10 and 233.
10(23)3+5tan(11π6)
Step 4.2.2.1.5.2
Multiply 2 by 10.
2033+5tan(11π6)
2033+5tan(11π6)
Step 4.2.2.1.6
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the fourth quadrant.
2033+5(-tan(π6))
Step 4.2.2.1.7
The exact value of tan(π6) is 33.
2033+5(-33)
Step 4.2.2.1.8
Multiply 5(-33).
Tap for more steps...
Step 4.2.2.1.8.1
Multiply -1 by 5.
2033-533
Step 4.2.2.1.8.2
Combine -5 and 33.
2033+-533
2033+-533
Step 4.2.2.1.9
Move the negative in front of the fraction.
2033-533
2033-533
Step 4.2.2.2
Simplify terms.
Tap for more steps...
Step 4.2.2.2.1
Combine the numerators over the common denominator.
203-533
Step 4.2.2.2.2
Subtract 53 from 203.
1533
Step 4.2.2.2.3
Cancel the common factor of 15 and 3.
Tap for more steps...
Step 4.2.2.2.3.1
Factor 3 out of 153.
3(53)3
Step 4.2.2.2.3.2
Cancel the common factors.
Tap for more steps...
Step 4.2.2.2.3.2.1
Factor 3 out of 3.
3(53)3(1)
Step 4.2.2.2.3.2.2
Cancel the common factor.
3(53)31
Step 4.2.2.2.3.2.3
Rewrite the expression.
531
Step 4.2.2.2.3.2.4
Divide 53 by 1.
53
53
53
53
53
53
Step 4.3
List all of the points.
(7π6+2πn,-53),(11π6+2πn,53), for any integer n
(7π6+2πn,-53),(11π6+2πn,53), for any integer n
Step 5
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]