Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Multiply by .
Step 1.1.3
Evaluate .
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
To write as a fraction with a common denominator, multiply by .
Step 1.1.3.4
Combine and .
Step 1.1.3.5
Combine the numerators over the common denominator.
Step 1.1.3.6
Simplify the numerator.
Step 1.1.3.6.1
Multiply by .
Step 1.1.3.6.2
Subtract from .
Step 1.1.3.7
Move the negative in front of the fraction.
Step 1.1.3.8
Combine and .
Step 1.1.3.9
Multiply by .
Step 1.1.3.10
Combine and .
Step 1.1.3.11
Move to the denominator using the negative exponent rule .
Step 1.1.3.12
Factor out of .
Step 1.1.3.13
Cancel the common factors.
Step 1.1.3.13.1
Factor out of .
Step 1.1.3.13.2
Cancel the common factor.
Step 1.1.3.13.3
Rewrite the expression.
Step 1.1.3.14
Move the negative in front of the fraction.
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Subtract from both sides of the equation.
Step 2.3
Find the LCD of the terms in the equation.
Step 2.3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.3.2
The LCM of one and any expression is the expression.
Step 2.4
Multiply each term in by to eliminate the fractions.
Step 2.4.1
Multiply each term in by .
Step 2.4.2
Simplify the left side.
Step 2.4.2.1
Cancel the common factor of .
Step 2.4.2.1.1
Move the leading negative in into the numerator.
Step 2.4.2.1.2
Cancel the common factor.
Step 2.4.2.1.3
Rewrite the expression.
Step 2.5
Solve the equation.
Step 2.5.1
Rewrite the equation as .
Step 2.5.2
Divide each term in by and simplify.
Step 2.5.2.1
Divide each term in by .
Step 2.5.2.2
Simplify the left side.
Step 2.5.2.2.1
Cancel the common factor.
Step 2.5.2.2.2
Divide by .
Step 2.5.2.3
Simplify the right side.
Step 2.5.2.3.1
Dividing two negative values results in a positive value.
Step 2.5.3
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 2.5.4
Simplify the exponent.
Step 2.5.4.1
Simplify the left side.
Step 2.5.4.1.1
Simplify .
Step 2.5.4.1.1.1
Multiply the exponents in .
Step 2.5.4.1.1.1.1
Apply the power rule and multiply exponents, .
Step 2.5.4.1.1.1.2
Cancel the common factor of .
Step 2.5.4.1.1.1.2.1
Cancel the common factor.
Step 2.5.4.1.1.1.2.2
Rewrite the expression.
Step 2.5.4.1.1.1.3
Cancel the common factor of .
Step 2.5.4.1.1.1.3.1
Cancel the common factor.
Step 2.5.4.1.1.1.3.2
Rewrite the expression.
Step 2.5.4.1.1.2
Simplify.
Step 2.5.4.2
Simplify the right side.
Step 2.5.4.2.1
Simplify .
Step 2.5.4.2.1.1
Apply the product rule to .
Step 2.5.4.2.1.2
One to any power is one.
Step 3
Step 3.1
Apply the rule to rewrite the exponentiation as a radical.
Step 3.2
Set the denominator in equal to to find where the expression is undefined.
Step 3.3
Solve for .
Step 3.3.1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3.3.2
Simplify each side of the equation.
Step 3.3.2.1
Use to rewrite as .
Step 3.3.2.2
Simplify the left side.
Step 3.3.2.2.1
Multiply the exponents in .
Step 3.3.2.2.1.1
Apply the power rule and multiply exponents, .
Step 3.3.2.2.1.2
Cancel the common factor of .
Step 3.3.2.2.1.2.1
Cancel the common factor.
Step 3.3.2.2.1.2.2
Rewrite the expression.
Step 3.3.2.3
Simplify the right side.
Step 3.3.2.3.1
Raising to any positive power yields .
Step 3.3.3
Solve for .
Step 3.3.3.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.3.3.2
Simplify .
Step 3.3.3.2.1
Rewrite as .
Step 3.3.3.2.2
Pull terms out from under the radical, assuming real numbers.
Step 3.4
Set the radicand in less than to find where the expression is undefined.
Step 3.5
Solve for .
Step 3.5.1
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Step 3.5.2
Simplify the equation.
Step 3.5.2.1
Simplify the left side.
Step 3.5.2.1.1
Pull terms out from under the radical.
Step 3.5.2.2
Simplify the right side.
Step 3.5.2.2.1
Simplify .
Step 3.5.2.2.1.1
Rewrite as .
Step 3.5.2.2.1.2
Pull terms out from under the radical.
Step 3.6
The equation is undefined where the denominator equals , the argument of a square root is less than , or the argument of a logarithm is less than or equal to .
Step 4
Step 4.1
Evaluate at .
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify each term.
Step 4.1.2.1
Combine and .
Step 4.1.2.2
Move to the numerator using the negative exponent rule .
Step 4.1.2.3
Multiply by by adding the exponents.
Step 4.1.2.3.1
Multiply by .
Step 4.1.2.3.1.1
Raise to the power of .
Step 4.1.2.3.1.2
Use the power rule to combine exponents.
Step 4.1.2.3.2
Write as a fraction with a common denominator.
Step 4.1.2.3.3
Combine the numerators over the common denominator.
Step 4.1.2.3.4
Subtract from .
Step 4.1.2.4
Change the sign of the exponent by rewriting the base as its reciprocal.
Step 4.1.2.5
Multiply the exponents in .
Step 4.1.2.5.1
Apply the power rule and multiply exponents, .
Step 4.1.2.5.2
Cancel the common factor of .
Step 4.1.2.5.2.1
Cancel the common factor.
Step 4.1.2.5.2.2
Rewrite the expression.
Step 4.1.2.6
Multiply .
Step 4.1.2.6.1
Rewrite as .
Step 4.1.2.6.2
Multiply the exponents in .
Step 4.1.2.6.2.1
Apply the power rule and multiply exponents, .
Step 4.1.2.6.2.2
Combine and .
Step 4.1.2.6.3
Use the power rule to combine exponents.
Step 4.1.2.6.4
Write as a fraction with a common denominator.
Step 4.1.2.6.5
Combine the numerators over the common denominator.
Step 4.1.2.6.6
Add and .
Step 4.2
Evaluate at .
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Step 4.2.2.1
Simplify each term.
Step 4.2.2.1.1
Multiply by .
Step 4.2.2.1.2
Rewrite the expression using the negative exponent rule .
Step 4.2.2.1.3
Simplify the denominator.
Step 4.2.2.1.3.1
Rewrite as .
Step 4.2.2.1.3.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.3.3
Cancel the common factor of .
Step 4.2.2.1.3.3.1
Cancel the common factor.
Step 4.2.2.1.3.3.2
Rewrite the expression.
Step 4.2.2.1.3.4
Evaluate the exponent.
Step 4.2.2.1.3.5
The expression contains a division by . The expression is undefined.
Undefined
Step 4.2.2.1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 4.2.2.2
The expression contains a division by . The expression is undefined.
Undefined
Undefined
Undefined
Step 4.3
List all of the points.
Step 5