Calculus Examples

Find the Horizontal Tangent Line f(x)=x^2-6
Step 1
Find the derivative.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Differentiate using the Power Rule which states that is where .
Step 1.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.4
Add and .
Step 2
Divide each term in by and simplify.
Tap for more steps...
Step 2.1
Divide each term in by .
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.1.1
Cancel the common factor.
Step 2.2.1.2
Divide by .
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Divide by .
Step 3
Solve the original function at .
Tap for more steps...
Step 3.1
Replace the variable with in the expression.
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Raising to any positive power yields .
Step 3.2.2
Subtract from .
Step 3.2.3
The final answer is .
Step 4
The horizontal tangent line on function is .
Step 5