Calculus Examples

Find the Critical Points f(x)=1/3x^3-9x+3
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Tap for more steps...
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Combine and .
Step 1.1.2.4
Combine and .
Step 1.1.2.5
Cancel the common factor of .
Tap for more steps...
Step 1.1.2.5.1
Cancel the common factor.
Step 1.1.2.5.2
Divide by .
Step 1.1.3
Evaluate .
Tap for more steps...
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4.2
Add and .
Step 1.2
The first derivative of with respect to is .
Step 2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the first derivative equal to .
Step 2.2
Add to both sides of the equation.
Step 2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.4
Simplify .
Tap for more steps...
Step 2.4.1
Rewrite as .
Step 2.4.2
Pull terms out from under the radical, assuming positive real numbers.
Step 2.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 2.5.1
First, use the positive value of the to find the first solution.
Step 2.5.2
Next, use the negative value of the to find the second solution.
Step 2.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 3
Find the values where the derivative is undefined.
Tap for more steps...
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Evaluate at each value where the derivative is or undefined.
Tap for more steps...
Step 4.1
Evaluate at .
Tap for more steps...
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Tap for more steps...
Step 4.1.2.1
Simplify each term.
Tap for more steps...
Step 4.1.2.1.1
Cancel the common factor of .
Tap for more steps...
Step 4.1.2.1.1.1
Factor out of .
Step 4.1.2.1.1.2
Cancel the common factor.
Step 4.1.2.1.1.3
Rewrite the expression.
Step 4.1.2.1.2
Raise to the power of .
Step 4.1.2.1.3
Multiply by .
Step 4.1.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 4.1.2.2.1
Subtract from .
Step 4.1.2.2.2
Add and .
Step 4.2
Evaluate at .
Tap for more steps...
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Tap for more steps...
Step 4.2.2.1
Simplify each term.
Tap for more steps...
Step 4.2.2.1.1
Raise to the power of .
Step 4.2.2.1.2
Cancel the common factor of .
Tap for more steps...
Step 4.2.2.1.2.1
Factor out of .
Step 4.2.2.1.2.2
Cancel the common factor.
Step 4.2.2.1.2.3
Rewrite the expression.
Step 4.2.2.1.3
Multiply by .
Step 4.2.2.2
Simplify by adding numbers.
Tap for more steps...
Step 4.2.2.2.1
Add and .
Step 4.2.2.2.2
Add and .
Step 4.3
List all of the points.
Step 5