Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Differentiate using the Quotient Rule which states that is where and .
Step 1.1.2
Differentiate.
Step 1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.4
Add and .
Step 1.1.3
Raise to the power of .
Step 1.1.4
Raise to the power of .
Step 1.1.5
Use the power rule to combine exponents.
Step 1.1.6
Add and .
Step 1.1.7
Differentiate using the Power Rule which states that is where .
Step 1.1.8
Multiply by .
Step 1.1.9
Simplify.
Step 1.1.9.1
Apply the distributive property.
Step 1.1.9.2
Simplify the numerator.
Step 1.1.9.2.1
Multiply by .
Step 1.1.9.2.2
Subtract from .
Step 1.1.9.3
Simplify the numerator.
Step 1.1.9.3.1
Rewrite as .
Step 1.1.9.3.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Set the numerator equal to zero.
Step 2.3
Solve the equation for .
Step 2.3.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3.2
Set equal to and solve for .
Step 2.3.2.1
Set equal to .
Step 2.3.2.2
Subtract from both sides of the equation.
Step 2.3.3
Set equal to and solve for .
Step 2.3.3.1
Set equal to .
Step 2.3.3.2
Add to both sides of the equation.
Step 2.3.4
The final solution is all the values that make true.
Step 3
Step 3.1
Set the denominator in equal to to find where the expression is undefined.
Step 3.2
Solve for .
Step 3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.2.2
Simplify .
Step 3.2.2.1
Rewrite as .
Step 3.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3.2.2.3
Plus or minus is .
Step 4
Step 4.1
Evaluate at .
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Step 4.1.2.1
Simplify the numerator.
Step 4.1.2.1.1
Raise to the power of .
Step 4.1.2.1.2
Add and .
Step 4.1.2.2
Divide by .
Step 4.2
Evaluate at .
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Step 4.2.2.1
Simplify the numerator.
Step 4.2.2.1.1
Raise to the power of .
Step 4.2.2.1.2
Add and .
Step 4.2.2.2
Divide by .
Step 4.3
Evaluate at .
Step 4.3.1
Substitute for .
Step 4.3.2
The expression contains a division by . The expression is undefined.
Undefined
Undefined
Step 4.4
List all of the points.
Step 5