Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Multiply by .
Step 1.1.3
Evaluate .
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Differentiate using the Constant Rule.
Step 1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4.2
Add and .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Factor out of .
Step 2.2.1
Factor out of .
Step 2.2.2
Factor out of .
Step 2.2.3
Factor out of .
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to .
Step 2.5
Set equal to and solve for .
Step 2.5.1
Set equal to .
Step 2.5.2
Solve for .
Step 2.5.2.1
Add to both sides of the equation.
Step 2.5.2.2
Divide each term in by and simplify.
Step 2.5.2.2.1
Divide each term in by .
Step 2.5.2.2.2
Simplify the left side.
Step 2.5.2.2.2.1
Cancel the common factor of .
Step 2.5.2.2.2.1.1
Cancel the common factor.
Step 2.5.2.2.2.1.2
Divide by .
Step 2.6
The final solution is all the values that make true.
Step 3
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Step 4.1
Evaluate at .
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Step 4.1.2.1
Simplify each term.
Step 4.1.2.1.1
Raising to any positive power yields .
Step 4.1.2.1.2
Multiply by .
Step 4.1.2.1.3
Raising to any positive power yields .
Step 4.1.2.1.4
Multiply by .
Step 4.1.2.2
Simplify by adding numbers.
Step 4.1.2.2.1
Add and .
Step 4.1.2.2.2
Add and .
Step 4.2
Evaluate at .
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Step 4.2.2.1
Simplify each term.
Step 4.2.2.1.1
Apply the product rule to .
Step 4.2.2.1.2
Raise to the power of .
Step 4.2.2.1.3
Raise to the power of .
Step 4.2.2.1.4
Cancel the common factor of .
Step 4.2.2.1.4.1
Factor out of .
Step 4.2.2.1.4.2
Cancel the common factor.
Step 4.2.2.1.4.3
Rewrite the expression.
Step 4.2.2.1.5
Apply the product rule to .
Step 4.2.2.1.6
Raise to the power of .
Step 4.2.2.1.7
Raise to the power of .
Step 4.2.2.1.8
Multiply .
Step 4.2.2.1.8.1
Combine and .
Step 4.2.2.1.8.2
Multiply by .
Step 4.2.2.1.9
Move the negative in front of the fraction.
Step 4.2.2.2
Combine fractions.
Step 4.2.2.2.1
Combine the numerators over the common denominator.
Step 4.2.2.2.2
Simplify the expression.
Step 4.2.2.2.2.1
Subtract from .
Step 4.2.2.2.2.2
Move the negative in front of the fraction.
Step 4.2.2.2.2.3
Write as a fraction with a common denominator.
Step 4.2.2.2.2.4
Combine the numerators over the common denominator.
Step 4.2.2.2.2.5
Subtract from .
Step 4.2.2.2.2.6
Move the negative in front of the fraction.
Step 4.3
List all of the points.
Step 5