Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Multiply by .
Step 1.1.3
Evaluate .
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Evaluate .
Step 1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.1.4.3
Multiply by .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Factor out of .
Step 2.2.1
Factor out of .
Step 2.2.2
Factor out of .
Step 2.2.3
Factor out of .
Step 2.2.4
Factor out of .
Step 2.2.5
Factor out of .
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to .
Step 2.5
Set equal to and solve for .
Step 2.5.1
Set equal to .
Step 2.5.2
Solve for .
Step 2.5.2.1
Use the quadratic formula to find the solutions.
Step 2.5.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.5.2.3
Simplify.
Step 2.5.2.3.1
Simplify the numerator.
Step 2.5.2.3.1.1
One to any power is one.
Step 2.5.2.3.1.2
Multiply .
Step 2.5.2.3.1.2.1
Multiply by .
Step 2.5.2.3.1.2.2
Multiply by .
Step 2.5.2.3.1.3
Add and .
Step 2.5.2.3.2
Multiply by .
Step 2.5.2.4
Simplify the expression to solve for the portion of the .
Step 2.5.2.4.1
Simplify the numerator.
Step 2.5.2.4.1.1
One to any power is one.
Step 2.5.2.4.1.2
Multiply .
Step 2.5.2.4.1.2.1
Multiply by .
Step 2.5.2.4.1.2.2
Multiply by .
Step 2.5.2.4.1.3
Add and .
Step 2.5.2.4.2
Multiply by .
Step 2.5.2.4.3
Change the to .
Step 2.5.2.4.4
Rewrite as .
Step 2.5.2.4.5
Factor out of .
Step 2.5.2.4.6
Factor out of .
Step 2.5.2.4.7
Move the negative in front of the fraction.
Step 2.5.2.5
Simplify the expression to solve for the portion of the .
Step 2.5.2.5.1
Simplify the numerator.
Step 2.5.2.5.1.1
One to any power is one.
Step 2.5.2.5.1.2
Multiply .
Step 2.5.2.5.1.2.1
Multiply by .
Step 2.5.2.5.1.2.2
Multiply by .
Step 2.5.2.5.1.3
Add and .
Step 2.5.2.5.2
Multiply by .
Step 2.5.2.5.3
Change the to .
Step 2.5.2.5.4
Rewrite as .
Step 2.5.2.5.5
Factor out of .
Step 2.5.2.5.6
Factor out of .
Step 2.5.2.5.7
Move the negative in front of the fraction.
Step 2.5.2.6
The final answer is the combination of both solutions.
Step 2.6
The final solution is all the values that make true.
Step 3
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Step 4.1
Evaluate at .
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Step 4.1.2.1
Simplify each term.
Step 4.1.2.1.1
Raising to any positive power yields .
Step 4.1.2.1.2
Multiply by .
Step 4.1.2.1.3
Raising to any positive power yields .
Step 4.1.2.1.4
Multiply by .
Step 4.1.2.1.5
Raising to any positive power yields .
Step 4.1.2.1.6
Multiply by .
Step 4.1.2.2
Simplify by adding numbers.
Step 4.1.2.2.1
Add and .
Step 4.1.2.2.2
Add and .
Step 4.2
Evaluate at .
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Step 4.2.2.1
Simplify each term.
Step 4.2.2.1.1
Use the power rule to distribute the exponent.
Step 4.2.2.1.1.1
Apply the product rule to .
Step 4.2.2.1.1.2
Apply the product rule to .
Step 4.2.2.1.2
Raise to the power of .
Step 4.2.2.1.3
Multiply by .
Step 4.2.2.1.4
Raise to the power of .
Step 4.2.2.1.5
Use the Binomial Theorem.
Step 4.2.2.1.6
Simplify each term.
Step 4.2.2.1.6.1
One to any power is one.
Step 4.2.2.1.6.2
One to any power is one.
Step 4.2.2.1.6.3
Multiply by .
Step 4.2.2.1.6.4
Multiply by .
Step 4.2.2.1.6.5
One to any power is one.
Step 4.2.2.1.6.6
Multiply by .
Step 4.2.2.1.6.7
Apply the product rule to .
Step 4.2.2.1.6.8
Raise to the power of .
Step 4.2.2.1.6.9
Multiply by .
Step 4.2.2.1.6.10
Rewrite as .
Step 4.2.2.1.6.10.1
Use to rewrite as .
Step 4.2.2.1.6.10.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.6.10.3
Combine and .
Step 4.2.2.1.6.10.4
Cancel the common factor of .
Step 4.2.2.1.6.10.4.1
Cancel the common factor.
Step 4.2.2.1.6.10.4.2
Rewrite the expression.
Step 4.2.2.1.6.10.5
Evaluate the exponent.
Step 4.2.2.1.6.11
Multiply by .
Step 4.2.2.1.6.12
Multiply by .
Step 4.2.2.1.6.13
Apply the product rule to .
Step 4.2.2.1.6.14
Raise to the power of .
Step 4.2.2.1.6.15
Rewrite as .
Step 4.2.2.1.6.16
Raise to the power of .
Step 4.2.2.1.6.17
Rewrite as .
Step 4.2.2.1.6.17.1
Factor out of .
Step 4.2.2.1.6.17.2
Rewrite as .
Step 4.2.2.1.6.18
Pull terms out from under the radical.
Step 4.2.2.1.6.19
Multiply by .
Step 4.2.2.1.6.20
Multiply by .
Step 4.2.2.1.6.21
Apply the product rule to .
Step 4.2.2.1.6.22
Raise to the power of .
Step 4.2.2.1.6.23
Multiply by .
Step 4.2.2.1.6.24
Rewrite as .
Step 4.2.2.1.6.24.1
Use to rewrite as .
Step 4.2.2.1.6.24.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.6.24.3
Combine and .
Step 4.2.2.1.6.24.4
Cancel the common factor of and .
Step 4.2.2.1.6.24.4.1
Factor out of .
Step 4.2.2.1.6.24.4.2
Cancel the common factors.
Step 4.2.2.1.6.24.4.2.1
Factor out of .
Step 4.2.2.1.6.24.4.2.2
Cancel the common factor.
Step 4.2.2.1.6.24.4.2.3
Rewrite the expression.
Step 4.2.2.1.6.24.4.2.4
Divide by .
Step 4.2.2.1.6.25
Raise to the power of .
Step 4.2.2.1.7
Add and .
Step 4.2.2.1.8
Add and .
Step 4.2.2.1.9
Subtract from .
Step 4.2.2.1.10
Cancel the common factor of and .
Step 4.2.2.1.10.1
Factor out of .
Step 4.2.2.1.10.2
Factor out of .
Step 4.2.2.1.10.3
Factor out of .
Step 4.2.2.1.10.4
Cancel the common factors.
Step 4.2.2.1.10.4.1
Factor out of .
Step 4.2.2.1.10.4.2
Cancel the common factor.
Step 4.2.2.1.10.4.3
Rewrite the expression.
Step 4.2.2.1.11
Combine and .
Step 4.2.2.1.12
Use the power rule to distribute the exponent.
Step 4.2.2.1.12.1
Apply the product rule to .
Step 4.2.2.1.12.2
Apply the product rule to .
Step 4.2.2.1.13
Raise to the power of .
Step 4.2.2.1.14
Raise to the power of .
Step 4.2.2.1.15
Cancel the common factor of .
Step 4.2.2.1.15.1
Move the leading negative in into the numerator.
Step 4.2.2.1.15.2
Factor out of .
Step 4.2.2.1.15.3
Cancel the common factor.
Step 4.2.2.1.15.4
Rewrite the expression.
Step 4.2.2.1.16
Use the Binomial Theorem.
Step 4.2.2.1.17
Simplify each term.
Step 4.2.2.1.17.1
One to any power is one.
Step 4.2.2.1.17.2
One to any power is one.
Step 4.2.2.1.17.3
Multiply by .
Step 4.2.2.1.17.4
Multiply by .
Step 4.2.2.1.17.5
Multiply by .
Step 4.2.2.1.17.6
Apply the product rule to .
Step 4.2.2.1.17.7
Raise to the power of .
Step 4.2.2.1.17.8
Multiply by .
Step 4.2.2.1.17.9
Rewrite as .
Step 4.2.2.1.17.9.1
Use to rewrite as .
Step 4.2.2.1.17.9.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.17.9.3
Combine and .
Step 4.2.2.1.17.9.4
Cancel the common factor of .
Step 4.2.2.1.17.9.4.1
Cancel the common factor.
Step 4.2.2.1.17.9.4.2
Rewrite the expression.
Step 4.2.2.1.17.9.5
Evaluate the exponent.
Step 4.2.2.1.17.10
Multiply by .
Step 4.2.2.1.17.11
Apply the product rule to .
Step 4.2.2.1.17.12
Raise to the power of .
Step 4.2.2.1.17.13
Rewrite as .
Step 4.2.2.1.17.14
Raise to the power of .
Step 4.2.2.1.17.15
Rewrite as .
Step 4.2.2.1.17.15.1
Factor out of .
Step 4.2.2.1.17.15.2
Rewrite as .
Step 4.2.2.1.17.16
Pull terms out from under the radical.
Step 4.2.2.1.17.17
Multiply by .
Step 4.2.2.1.18
Add and .
Step 4.2.2.1.19
Subtract from .
Step 4.2.2.1.20
Cancel the common factor of and .
Step 4.2.2.1.20.1
Factor out of .
Step 4.2.2.1.20.2
Cancel the common factors.
Step 4.2.2.1.20.2.1
Factor out of .
Step 4.2.2.1.20.2.2
Cancel the common factor.
Step 4.2.2.1.20.2.3
Rewrite the expression.
Step 4.2.2.1.20.2.4
Divide by .
Step 4.2.2.1.21
Apply the distributive property.
Step 4.2.2.1.22
Multiply by .
Step 4.2.2.1.23
Multiply by .
Step 4.2.2.1.24
Use the power rule to distribute the exponent.
Step 4.2.2.1.24.1
Apply the product rule to .
Step 4.2.2.1.24.2
Apply the product rule to .
Step 4.2.2.1.25
Raise to the power of .
Step 4.2.2.1.26
Multiply by .
Step 4.2.2.1.27
Raise to the power of .
Step 4.2.2.1.28
Cancel the common factor of .
Step 4.2.2.1.28.1
Factor out of .
Step 4.2.2.1.28.2
Factor out of .
Step 4.2.2.1.28.3
Cancel the common factor.
Step 4.2.2.1.28.4
Rewrite the expression.
Step 4.2.2.1.29
Combine and .
Step 4.2.2.1.30
Rewrite as .
Step 4.2.2.1.31
Expand using the FOIL Method.
Step 4.2.2.1.31.1
Apply the distributive property.
Step 4.2.2.1.31.2
Apply the distributive property.
Step 4.2.2.1.31.3
Apply the distributive property.
Step 4.2.2.1.32
Simplify and combine like terms.
Step 4.2.2.1.32.1
Simplify each term.
Step 4.2.2.1.32.1.1
Multiply by .
Step 4.2.2.1.32.1.2
Multiply by .
Step 4.2.2.1.32.1.3
Multiply by .
Step 4.2.2.1.32.1.4
Multiply .
Step 4.2.2.1.32.1.4.1
Multiply by .
Step 4.2.2.1.32.1.4.2
Multiply by .
Step 4.2.2.1.32.1.4.3
Raise to the power of .
Step 4.2.2.1.32.1.4.4
Raise to the power of .
Step 4.2.2.1.32.1.4.5
Use the power rule to combine exponents.
Step 4.2.2.1.32.1.4.6
Add and .
Step 4.2.2.1.32.1.5
Rewrite as .
Step 4.2.2.1.32.1.5.1
Use to rewrite as .
Step 4.2.2.1.32.1.5.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.32.1.5.3
Combine and .
Step 4.2.2.1.32.1.5.4
Cancel the common factor of .
Step 4.2.2.1.32.1.5.4.1
Cancel the common factor.
Step 4.2.2.1.32.1.5.4.2
Rewrite the expression.
Step 4.2.2.1.32.1.5.5
Evaluate the exponent.
Step 4.2.2.1.32.2
Add and .
Step 4.2.2.1.32.3
Subtract from .
Step 4.2.2.1.33
Cancel the common factor of and .
Step 4.2.2.1.33.1
Factor out of .
Step 4.2.2.1.33.2
Cancel the common factors.
Step 4.2.2.1.33.2.1
Factor out of .
Step 4.2.2.1.33.2.2
Cancel the common factor.
Step 4.2.2.1.33.2.3
Rewrite the expression.
Step 4.2.2.1.33.2.4
Divide by .
Step 4.2.2.1.34
Apply the distributive property.
Step 4.2.2.1.35
Multiply by .
Step 4.2.2.1.36
Multiply by .
Step 4.2.2.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.2.3
Combine fractions.
Step 4.2.2.3.1
Combine and .
Step 4.2.2.3.2
Simplify the expression.
Step 4.2.2.3.2.1
Combine the numerators over the common denominator.
Step 4.2.2.3.2.2
Multiply by .
Step 4.2.2.4
Simplify the numerator.
Step 4.2.2.4.1
Apply the distributive property.
Step 4.2.2.4.2
Multiply by .
Step 4.2.2.4.3
Multiply by .
Step 4.2.2.4.4
Subtract from .
Step 4.2.2.5
To write as a fraction with a common denominator, multiply by .
Step 4.2.2.6
Combine fractions.
Step 4.2.2.6.1
Combine and .
Step 4.2.2.6.2
Combine the numerators over the common denominator.
Step 4.2.2.7
Simplify the numerator.
Step 4.2.2.7.1
Multiply by .
Step 4.2.2.7.2
Add and .
Step 4.2.2.8
To write as a fraction with a common denominator, multiply by .
Step 4.2.2.9
Combine and .
Step 4.2.2.10
Simplify the expression.
Step 4.2.2.10.1
Combine the numerators over the common denominator.
Step 4.2.2.10.2
Multiply by .
Step 4.2.2.10.3
Subtract from .
Step 4.2.2.11
To write as a fraction with a common denominator, multiply by .
Step 4.2.2.12
Combine fractions.
Step 4.2.2.12.1
Combine and .
Step 4.2.2.12.2
Combine the numerators over the common denominator.
Step 4.2.2.13
Simplify the numerator.
Step 4.2.2.13.1
Multiply by .
Step 4.2.2.13.2
Add and .
Step 4.2.2.14
Simplify with factoring out.
Step 4.2.2.14.1
Rewrite as .
Step 4.2.2.14.2
Factor out of .
Step 4.2.2.14.3
Factor out of .
Step 4.2.2.14.4
Move the negative in front of the fraction.
Step 4.3
Evaluate at .
Step 4.3.1
Substitute for .
Step 4.3.2
Simplify.
Step 4.3.2.1
Simplify each term.
Step 4.3.2.1.1
Use the power rule to distribute the exponent.
Step 4.3.2.1.1.1
Apply the product rule to .
Step 4.3.2.1.1.2
Apply the product rule to .
Step 4.3.2.1.2
Raise to the power of .
Step 4.3.2.1.3
Multiply by .
Step 4.3.2.1.4
Raise to the power of .
Step 4.3.2.1.5
Use the Binomial Theorem.
Step 4.3.2.1.6
Simplify each term.
Step 4.3.2.1.6.1
One to any power is one.
Step 4.3.2.1.6.2
One to any power is one.
Step 4.3.2.1.6.3
Multiply by .
Step 4.3.2.1.6.4
One to any power is one.
Step 4.3.2.1.6.5
Multiply by .
Step 4.3.2.1.6.6
Rewrite as .
Step 4.3.2.1.6.6.1
Use to rewrite as .
Step 4.3.2.1.6.6.2
Apply the power rule and multiply exponents, .
Step 4.3.2.1.6.6.3
Combine and .
Step 4.3.2.1.6.6.4
Cancel the common factor of .
Step 4.3.2.1.6.6.4.1
Cancel the common factor.
Step 4.3.2.1.6.6.4.2
Rewrite the expression.
Step 4.3.2.1.6.6.5
Evaluate the exponent.
Step 4.3.2.1.6.7
Multiply by .
Step 4.3.2.1.6.8
Multiply by .
Step 4.3.2.1.6.9
Rewrite as .
Step 4.3.2.1.6.10
Raise to the power of .
Step 4.3.2.1.6.11
Rewrite as .
Step 4.3.2.1.6.11.1
Factor out of .
Step 4.3.2.1.6.11.2
Rewrite as .
Step 4.3.2.1.6.12
Pull terms out from under the radical.
Step 4.3.2.1.6.13
Multiply by .
Step 4.3.2.1.6.14
Rewrite as .
Step 4.3.2.1.6.14.1
Use to rewrite as .
Step 4.3.2.1.6.14.2
Apply the power rule and multiply exponents, .
Step 4.3.2.1.6.14.3
Combine and .
Step 4.3.2.1.6.14.4
Cancel the common factor of and .
Step 4.3.2.1.6.14.4.1
Factor out of .
Step 4.3.2.1.6.14.4.2
Cancel the common factors.
Step 4.3.2.1.6.14.4.2.1
Factor out of .
Step 4.3.2.1.6.14.4.2.2
Cancel the common factor.
Step 4.3.2.1.6.14.4.2.3
Rewrite the expression.
Step 4.3.2.1.6.14.4.2.4
Divide by .
Step 4.3.2.1.6.15
Raise to the power of .
Step 4.3.2.1.7
Add and .
Step 4.3.2.1.8
Add and .
Step 4.3.2.1.9
Add and .
Step 4.3.2.1.10
Cancel the common factor of and .
Step 4.3.2.1.10.1
Factor out of .
Step 4.3.2.1.10.2
Factor out of .
Step 4.3.2.1.10.3
Factor out of .
Step 4.3.2.1.10.4
Cancel the common factors.
Step 4.3.2.1.10.4.1
Factor out of .
Step 4.3.2.1.10.4.2
Cancel the common factor.
Step 4.3.2.1.10.4.3
Rewrite the expression.
Step 4.3.2.1.11
Combine and .
Step 4.3.2.1.12
Use the power rule to distribute the exponent.
Step 4.3.2.1.12.1
Apply the product rule to .
Step 4.3.2.1.12.2
Apply the product rule to .
Step 4.3.2.1.13
Raise to the power of .
Step 4.3.2.1.14
Raise to the power of .
Step 4.3.2.1.15
Cancel the common factor of .
Step 4.3.2.1.15.1
Move the leading negative in into the numerator.
Step 4.3.2.1.15.2
Factor out of .
Step 4.3.2.1.15.3
Cancel the common factor.
Step 4.3.2.1.15.4
Rewrite the expression.
Step 4.3.2.1.16
Use the Binomial Theorem.
Step 4.3.2.1.17
Simplify each term.
Step 4.3.2.1.17.1
One to any power is one.
Step 4.3.2.1.17.2
One to any power is one.
Step 4.3.2.1.17.3
Multiply by .
Step 4.3.2.1.17.4
Multiply by .
Step 4.3.2.1.17.5
Rewrite as .
Step 4.3.2.1.17.5.1
Use to rewrite as .
Step 4.3.2.1.17.5.2
Apply the power rule and multiply exponents, .
Step 4.3.2.1.17.5.3
Combine and .
Step 4.3.2.1.17.5.4
Cancel the common factor of .
Step 4.3.2.1.17.5.4.1
Cancel the common factor.
Step 4.3.2.1.17.5.4.2
Rewrite the expression.
Step 4.3.2.1.17.5.5
Evaluate the exponent.
Step 4.3.2.1.17.6
Multiply by .
Step 4.3.2.1.17.7
Rewrite as .
Step 4.3.2.1.17.8
Raise to the power of .
Step 4.3.2.1.17.9
Rewrite as .
Step 4.3.2.1.17.9.1
Factor out of .
Step 4.3.2.1.17.9.2
Rewrite as .
Step 4.3.2.1.17.10
Pull terms out from under the radical.
Step 4.3.2.1.18
Add and .
Step 4.3.2.1.19
Add and .
Step 4.3.2.1.20
Cancel the common factor of and .
Step 4.3.2.1.20.1
Factor out of .
Step 4.3.2.1.20.2
Cancel the common factors.
Step 4.3.2.1.20.2.1
Factor out of .
Step 4.3.2.1.20.2.2
Cancel the common factor.
Step 4.3.2.1.20.2.3
Rewrite the expression.
Step 4.3.2.1.20.2.4
Divide by .
Step 4.3.2.1.21
Apply the distributive property.
Step 4.3.2.1.22
Multiply by .
Step 4.3.2.1.23
Multiply by .
Step 4.3.2.1.24
Use the power rule to distribute the exponent.
Step 4.3.2.1.24.1
Apply the product rule to .
Step 4.3.2.1.24.2
Apply the product rule to .
Step 4.3.2.1.25
Raise to the power of .
Step 4.3.2.1.26
Multiply by .
Step 4.3.2.1.27
Raise to the power of .
Step 4.3.2.1.28
Cancel the common factor of .
Step 4.3.2.1.28.1
Factor out of .
Step 4.3.2.1.28.2
Factor out of .
Step 4.3.2.1.28.3
Cancel the common factor.
Step 4.3.2.1.28.4
Rewrite the expression.
Step 4.3.2.1.29
Combine and .
Step 4.3.2.1.30
Rewrite as .
Step 4.3.2.1.31
Expand using the FOIL Method.
Step 4.3.2.1.31.1
Apply the distributive property.
Step 4.3.2.1.31.2
Apply the distributive property.
Step 4.3.2.1.31.3
Apply the distributive property.
Step 4.3.2.1.32
Simplify and combine like terms.
Step 4.3.2.1.32.1
Simplify each term.
Step 4.3.2.1.32.1.1
Multiply by .
Step 4.3.2.1.32.1.2
Multiply by .
Step 4.3.2.1.32.1.3
Multiply by .
Step 4.3.2.1.32.1.4
Combine using the product rule for radicals.
Step 4.3.2.1.32.1.5
Multiply by .
Step 4.3.2.1.32.1.6
Rewrite as .
Step 4.3.2.1.32.1.7
Pull terms out from under the radical, assuming positive real numbers.
Step 4.3.2.1.32.2
Add and .
Step 4.3.2.1.32.3
Add and .
Step 4.3.2.1.33
Cancel the common factor of and .
Step 4.3.2.1.33.1
Factor out of .
Step 4.3.2.1.33.2
Cancel the common factors.
Step 4.3.2.1.33.2.1
Factor out of .
Step 4.3.2.1.33.2.2
Cancel the common factor.
Step 4.3.2.1.33.2.3
Rewrite the expression.
Step 4.3.2.1.33.2.4
Divide by .
Step 4.3.2.1.34
Apply the distributive property.
Step 4.3.2.1.35
Multiply by .
Step 4.3.2.2
To write as a fraction with a common denominator, multiply by .
Step 4.3.2.3
Combine fractions.
Step 4.3.2.3.1
Combine and .
Step 4.3.2.3.2
Simplify the expression.
Step 4.3.2.3.2.1
Combine the numerators over the common denominator.
Step 4.3.2.3.2.2
Multiply by .
Step 4.3.2.4
Simplify the numerator.
Step 4.3.2.4.1
Apply the distributive property.
Step 4.3.2.4.2
Multiply by .
Step 4.3.2.4.3
Multiply by .
Step 4.3.2.4.4
Subtract from .
Step 4.3.2.5
To write as a fraction with a common denominator, multiply by .
Step 4.3.2.6
Combine fractions.
Step 4.3.2.6.1
Combine and .
Step 4.3.2.6.2
Combine the numerators over the common denominator.
Step 4.3.2.7
Simplify the numerator.
Step 4.3.2.7.1
Multiply by .
Step 4.3.2.7.2
Subtract from .
Step 4.3.2.8
To write as a fraction with a common denominator, multiply by .
Step 4.3.2.9
Combine and .
Step 4.3.2.10
Simplify the expression.
Step 4.3.2.10.1
Combine the numerators over the common denominator.
Step 4.3.2.10.2
Multiply by .
Step 4.3.2.10.3
Subtract from .
Step 4.3.2.11
To write as a fraction with a common denominator, multiply by .
Step 4.3.2.12
Combine fractions.
Step 4.3.2.12.1
Combine and .
Step 4.3.2.12.2
Combine the numerators over the common denominator.
Step 4.3.2.13
Simplify the numerator.
Step 4.3.2.13.1
Multiply by .
Step 4.3.2.13.2
Subtract from .
Step 4.3.2.14
Simplify with factoring out.
Step 4.3.2.14.1
Rewrite as .
Step 4.3.2.14.2
Factor out of .
Step 4.3.2.14.3
Factor out of .
Step 4.3.2.14.4
Move the negative in front of the fraction.
Step 4.4
List all of the points.
Step 5