Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Differentiate using the Product Rule which states that is where and .
Step 2.2.2
By the Sum Rule, the derivative of with respect to is .
Step 2.2.3
Differentiate using the Power Rule which states that is where .
Step 2.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.5
Rewrite as .
Step 2.2.6
Add and .
Step 2.2.7
Multiply by .
Step 2.3
Differentiate using the Power Rule which states that is where .
Step 2.4
Simplify.
Step 2.4.1
Apply the distributive property.
Step 2.4.2
Multiply by .
Step 2.4.3
Reorder terms.
Step 3
Since is constant with respect to , the derivative of with respect to is .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Move all terms not containing to the right side of the equation.
Step 5.1.1
Subtract from both sides of the equation.
Step 5.1.2
Subtract from both sides of the equation.
Step 5.2
Factor out of .
Step 5.2.1
Factor out of .
Step 5.2.2
Raise to the power of .
Step 5.2.3
Factor out of .
Step 5.2.4
Factor out of .
Step 5.3
Divide each term in by and simplify.
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Step 5.3.2.1
Cancel the common factor of .
Step 5.3.2.1.1
Cancel the common factor.
Step 5.3.2.1.2
Divide by .
Step 5.3.3
Simplify the right side.
Step 5.3.3.1
Simplify each term.
Step 5.3.3.1.1
Move the negative in front of the fraction.
Step 5.3.3.1.2
Move the negative in front of the fraction.
Step 5.3.3.2
Simplify terms.
Step 5.3.3.2.1
Combine the numerators over the common denominator.
Step 5.3.3.2.2
Factor out of .
Step 5.3.3.2.3
Factor out of .
Step 5.3.3.2.4
Factor out of .
Step 5.3.3.2.5
Simplify the expression.
Step 5.3.3.2.5.1
Rewrite as .
Step 5.3.3.2.5.2
Move the negative in front of the fraction.
Step 6
Replace with .