Enter a problem...
Calculus Examples
f(x)=x3-8x2-20xf(x)=x3−8x2−20x
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Differentiate.
Step 1.1.1.1
By the Sum Rule, the derivative of x3-8x2-20x with respect to x is ddx[x3]+ddx[-8x2]+ddx[-20x].
f′(x)=ddx(x3)+ddx(-8x2)+ddx(-20x)
Step 1.1.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
f′(x)=3x2+ddx(-8x2)+ddx(-20x)
f′(x)=3x2+ddx(-8x2)+ddx(-20x)
Step 1.1.2
Evaluate ddx[-8x2].
Step 1.1.2.1
Since -8 is constant with respect to x, the derivative of -8x2 with respect to x is -8ddx[x2].
f′(x)=3x2-8ddxx2+ddx(-20x)
Step 1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
f′(x)=3x2-8(2x)+ddx(-20x)
Step 1.1.2.3
Multiply 2 by -8.
f′(x)=3x2-16x+ddx(-20x)
f′(x)=3x2-16x+ddx(-20x)
Step 1.1.3
Evaluate ddx[-20x].
Step 1.1.3.1
Since -20 is constant with respect to x, the derivative of -20x with respect to x is -20ddx[x].
f′(x)=3x2-16x-20ddxx
Step 1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
f′(x)=3x2-16x-20⋅1
Step 1.1.3.3
Multiply -20 by 1.
f′(x)=3x2-16x-20
f′(x)=3x2-16x-20
f′(x)=3x2-16x-20
Step 1.2
The first derivative of f(x) with respect to x is 3x2-16x-20.
3x2-16x-20
3x2-16x-20
Step 2
Step 2.1
Set the first derivative equal to 0.
3x2-16x-20=0
Step 2.2
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 2.3
Substitute the values a=3, b=-16, and c=-20 into the quadratic formula and solve for x.
16±√(-16)2-4⋅(3⋅-20)2⋅3
Step 2.4
Simplify.
Step 2.4.1
Simplify the numerator.
Step 2.4.1.1
Raise -16 to the power of 2.
x=16±√256-4⋅3⋅-202⋅3
Step 2.4.1.2
Multiply -4⋅3⋅-20.
Step 2.4.1.2.1
Multiply -4 by 3.
x=16±√256-12⋅-202⋅3
Step 2.4.1.2.2
Multiply -12 by -20.
x=16±√256+2402⋅3
x=16±√256+2402⋅3
Step 2.4.1.3
Add 256 and 240.
x=16±√4962⋅3
Step 2.4.1.4
Rewrite 496 as 42⋅31.
Step 2.4.1.4.1
Factor 16 out of 496.
x=16±√16(31)2⋅3
Step 2.4.1.4.2
Rewrite 16 as 42.
x=16±√42⋅312⋅3
x=16±√42⋅312⋅3
Step 2.4.1.5
Pull terms out from under the radical.
x=16±4√312⋅3
x=16±4√312⋅3
Step 2.4.2
Multiply 2 by 3.
x=16±4√316
Step 2.4.3
Simplify 16±4√316.
x=8±2√313
x=8±2√313
Step 2.5
Simplify the expression to solve for the + portion of the ±.
Step 2.5.1
Simplify the numerator.
Step 2.5.1.1
Raise -16 to the power of 2.
x=16±√256-4⋅3⋅-202⋅3
Step 2.5.1.2
Multiply -4⋅3⋅-20.
Step 2.5.1.2.1
Multiply -4 by 3.
x=16±√256-12⋅-202⋅3
Step 2.5.1.2.2
Multiply -12 by -20.
x=16±√256+2402⋅3
x=16±√256+2402⋅3
Step 2.5.1.3
Add 256 and 240.
x=16±√4962⋅3
Step 2.5.1.4
Rewrite 496 as 42⋅31.
Step 2.5.1.4.1
Factor 16 out of 496.
x=16±√16(31)2⋅3
Step 2.5.1.4.2
Rewrite 16 as 42.
x=16±√42⋅312⋅3
x=16±√42⋅312⋅3
Step 2.5.1.5
Pull terms out from under the radical.
x=16±4√312⋅3
x=16±4√312⋅3
Step 2.5.2
Multiply 2 by 3.
x=16±4√316
Step 2.5.3
Simplify 16±4√316.
x=8±2√313
Step 2.5.4
Change the ± to +.
x=8+2√313
x=8+2√313
Step 2.6
Simplify the expression to solve for the - portion of the ±.
Step 2.6.1
Simplify the numerator.
Step 2.6.1.1
Raise -16 to the power of 2.
x=16±√256-4⋅3⋅-202⋅3
Step 2.6.1.2
Multiply -4⋅3⋅-20.
Step 2.6.1.2.1
Multiply -4 by 3.
x=16±√256-12⋅-202⋅3
Step 2.6.1.2.2
Multiply -12 by -20.
x=16±√256+2402⋅3
x=16±√256+2402⋅3
Step 2.6.1.3
Add 256 and 240.
x=16±√4962⋅3
Step 2.6.1.4
Rewrite 496 as 42⋅31.
Step 2.6.1.4.1
Factor 16 out of 496.
x=16±√16(31)2⋅3
Step 2.6.1.4.2
Rewrite 16 as 42.
x=16±√42⋅312⋅3
x=16±√42⋅312⋅3
Step 2.6.1.5
Pull terms out from under the radical.
x=16±4√312⋅3
x=16±4√312⋅3
Step 2.6.2
Multiply 2 by 3.
x=16±4√316
Step 2.6.3
Simplify 16±4√316.
x=8±2√313
Step 2.6.4
Change the ± to -.
x=8-2√313
x=8-2√313
Step 2.7
The final answer is the combination of both solutions.
x=8+2√313,8-2√313
x=8+2√313,8-2√313
Step 3
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Step 4.1
Evaluate at x=8+2√313.
Step 4.1.1
Substitute 8+2√313 for x.
(8+2√313)3-8(8+2√313)2-208+2√313
Step 4.1.2
Simplify.
Step 4.1.2.1
Simplify each term.
Step 4.1.2.1.1
Apply the product rule to 8+2√313.
(8+2√31)333-8(8+2√313)2-208+2√313
Step 4.1.2.1.2
Raise 3 to the power of 3.
(8+2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.3
Use the Binomial Theorem.
83+3⋅82(2√31)+3⋅8(2√31)2+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4
Simplify each term.
Step 4.1.2.1.4.1
Raise 8 to the power of 3.
512+3⋅82(2√31)+3⋅8(2√31)2+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.2
Raise 8 to the power of 2.
512+3⋅64(2√31)+3⋅8(2√31)2+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.3
Multiply 3 by 64.
512+192(2√31)+3⋅8(2√31)2+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.4
Multiply 2 by 192.
512+384√31+3⋅8(2√31)2+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.5
Multiply 3 by 8.
512+384√31+24(2√31)2+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.6
Apply the product rule to 2√31.
512+384√31+24(22√312)+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.7
Raise 2 to the power of 2.
512+384√31+24(4√312)+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.8
Rewrite √312 as 31.
Step 4.1.2.1.4.8.1
Use n√ax=axn to rewrite √31 as 3112.
512+384√31+24(4(3112)2)+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.8.2
Apply the power rule and multiply exponents, (am)n=amn.
512+384√31+24(4⋅3112⋅2)+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.8.3
Combine 12 and 2.
512+384√31+24(4⋅3122)+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.8.4
Cancel the common factor of 2.
Step 4.1.2.1.4.8.4.1
Cancel the common factor.
512+384√31+24(4⋅3122)+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.8.4.2
Rewrite the expression.
512+384√31+24(4⋅311)+(2√31)327-8(8+2√313)2-208+2√313
512+384√31+24(4⋅311)+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.8.5
Evaluate the exponent.
512+384√31+24(4⋅31)+(2√31)327-8(8+2√313)2-208+2√313
512+384√31+24(4⋅31)+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.9
Multiply 24(4⋅31).
Step 4.1.2.1.4.9.1
Multiply 4 by 31.
512+384√31+24⋅124+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.9.2
Multiply 24 by 124.
512+384√31+2976+(2√31)327-8(8+2√313)2-208+2√313
512+384√31+2976+(2√31)327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.10
Apply the product rule to 2√31.
512+384√31+2976+23√31327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.11
Raise 2 to the power of 3.
512+384√31+2976+8√31327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.12
Rewrite √313 as √313.
512+384√31+2976+8√31327-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.13
Raise 31 to the power of 3.
512+384√31+2976+8√2979127-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.14
Rewrite 29791 as 312⋅31.
Step 4.1.2.1.4.14.1
Factor 961 out of 29791.
512+384√31+2976+8√961(31)27-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.14.2
Rewrite 961 as 312.
512+384√31+2976+8√312⋅3127-8(8+2√313)2-208+2√313
512+384√31+2976+8√312⋅3127-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.15
Pull terms out from under the radical.
512+384√31+2976+8(31√31)27-8(8+2√313)2-208+2√313
Step 4.1.2.1.4.16
Multiply 31 by 8.
512+384√31+2976+248√3127-8(8+2√313)2-208+2√313
512+384√31+2976+248√3127-8(8+2√313)2-208+2√313
Step 4.1.2.1.5
Add 512 and 2976.
3488+384√31+248√3127-8(8+2√313)2-208+2√313
Step 4.1.2.1.6
Add 384√31 and 248√31.
3488+632√3127-8(8+2√313)2-208+2√313
Step 4.1.2.1.7
Apply the product rule to 8+2√313.
3488+632√3127-8(8+2√31)232-208+2√313
Step 4.1.2.1.8
Raise 3 to the power of 2.
3488+632√3127-8(8+2√31)29-208+2√313
Step 4.1.2.1.9
Rewrite (8+2√31)2 as (8+2√31)(8+2√31).
3488+632√3127-8(8+2√31)(8+2√31)9-208+2√313
Step 4.1.2.1.10
Expand (8+2√31)(8+2√31) using the FOIL Method.
Step 4.1.2.1.10.1
Apply the distributive property.
3488+632√3127-88(8+2√31)+2√31(8+2√31)9-208+2√313
Step 4.1.2.1.10.2
Apply the distributive property.
3488+632√3127-88⋅8+8(2√31)+2√31(8+2√31)9-208+2√313
Step 4.1.2.1.10.3
Apply the distributive property.
3488+632√3127-88⋅8+8(2√31)+2√31⋅8+2√31(2√31)9-208+2√313
3488+632√3127-88⋅8+8(2√31)+2√31⋅8+2√31(2√31)9-208+2√313
Step 4.1.2.1.11
Simplify and combine like terms.
Step 4.1.2.1.11.1
Simplify each term.
Step 4.1.2.1.11.1.1
Multiply 8 by 8.
3488+632√3127-864+8(2√31)+2√31⋅8+2√31(2√31)9-208+2√313
Step 4.1.2.1.11.1.2
Multiply 2 by 8.
3488+632√3127-864+16√31+2√31⋅8+2√31(2√31)9-208+2√313
Step 4.1.2.1.11.1.3
Multiply 8 by 2.
3488+632√3127-864+16√31+16√31+2√31(2√31)9-208+2√313
Step 4.1.2.1.11.1.4
Multiply 2√31(2√31).
Step 4.1.2.1.11.1.4.1
Multiply 2 by 2.
3488+632√3127-864+16√31+16√31+4√31√319-208+2√313
Step 4.1.2.1.11.1.4.2
Raise √31 to the power of 1.
3488+632√3127-864+16√31+16√31+4(√311√31)9-208+2√313
Step 4.1.2.1.11.1.4.3
Raise √31 to the power of 1.
3488+632√3127-864+16√31+16√31+4(√311√311)9-208+2√313
Step 4.1.2.1.11.1.4.4
Use the power rule aman=am+n to combine exponents.
3488+632√3127-864+16√31+16√31+4√311+19-208+2√313
Step 4.1.2.1.11.1.4.5
Add 1 and 1.
3488+632√3127-864+16√31+16√31+4√3129-208+2√313
3488+632√3127-864+16√31+16√31+4√3129-208+2√313
Step 4.1.2.1.11.1.5
Rewrite √312 as 31.
Step 4.1.2.1.11.1.5.1
Use n√ax=axn to rewrite √31 as 3112.
3488+632√3127-864+16√31+16√31+4(3112)29-208+2√313
Step 4.1.2.1.11.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
3488+632√3127-864+16√31+16√31+4⋅3112⋅29-208+2√313
Step 4.1.2.1.11.1.5.3
Combine 12 and 2.
3488+632√3127-864+16√31+16√31+4⋅31229-208+2√313
Step 4.1.2.1.11.1.5.4
Cancel the common factor of 2.
Step 4.1.2.1.11.1.5.4.1
Cancel the common factor.
3488+632√3127-864+16√31+16√31+4⋅31229-208+2√313
Step 4.1.2.1.11.1.5.4.2
Rewrite the expression.
3488+632√3127-864+16√31+16√31+4⋅3119-208+2√313
3488+632√3127-864+16√31+16√31+4⋅3119-208+2√313
Step 4.1.2.1.11.1.5.5
Evaluate the exponent.
3488+632√3127-864+16√31+16√31+4⋅319-208+2√313
3488+632√3127-864+16√31+16√31+4⋅319-208+2√313
Step 4.1.2.1.11.1.6
Multiply 4 by 31.
3488+632√3127-864+16√31+16√31+1249-208+2√313
3488+632√3127-864+16√31+16√31+1249-208+2√313
Step 4.1.2.1.11.2
Add 64 and 124.
3488+632√3127-8188+16√31+16√319-208+2√313
Step 4.1.2.1.11.3
Add 16√31 and 16√31.
3488+632√3127-8188+32√319-208+2√313
3488+632√3127-8188+32√319-208+2√313
Step 4.1.2.1.12
Combine -8 and 188+32√319.
3488+632√3127+-8(188+32√31)9-208+2√313
Step 4.1.2.1.13
Move the negative in front of the fraction.
3488+632√3127-(8)(188+32√31)9-208+2√313
Step 4.1.2.1.14
Combine -20 and 8+2√313.
3488+632√3127-8(188+32√31)9+-20(8+2√31)3
Step 4.1.2.1.15
Move the negative in front of the fraction.
3488+632√3127-8(188+32√31)9-20(8+2√31)3
3488+632√3127-8(188+32√31)9-20(8+2√31)3
Step 4.1.2.2
Find the common denominator.
Step 4.1.2.2.1
Multiply 8(188+32√31)9 by 33.
3488+632√3127-(8(188+32√31)9⋅33)-20(8+2√31)3
Step 4.1.2.2.2
Multiply 8(188+32√31)9 by 33.
3488+632√3127-8(188+32√31)⋅39⋅3-20(8+2√31)3
Step 4.1.2.2.3
Multiply 20(8+2√31)3 by 99.
3488+632√3127-8(188+32√31)⋅39⋅3-(20(8+2√31)3⋅99)
Step 4.1.2.2.4
Multiply 20(8+2√31)3 by 99.
3488+632√3127-8(188+32√31)⋅39⋅3-20(8+2√31)⋅93⋅9
Step 4.1.2.2.5
Reorder the factors of 9⋅3.
3488+632√3127-8(188+32√31)⋅33⋅9-20(8+2√31)⋅93⋅9
Step 4.1.2.2.6
Multiply 3 by 9.
3488+632√3127-8(188+32√31)⋅327-20(8+2√31)⋅93⋅9
Step 4.1.2.2.7
Multiply 3 by 9.
3488+632√3127-8(188+32√31)⋅327-20(8+2√31)⋅927
3488+632√3127-8(188+32√31)⋅327-20(8+2√31)⋅927
Step 4.1.2.3
Combine the numerators over the common denominator.
3488+632√31-8(188+32√31)⋅3-20(8+2√31)⋅927
Step 4.1.2.4
Simplify each term.
Step 4.1.2.4.1
Apply the distributive property.
3488+632√31+(-8⋅188-8(32√31))⋅3-20(8+2√31)⋅927
Step 4.1.2.4.2
Multiply -8 by 188.
3488+632√31+(-1504-8(32√31))⋅3-20(8+2√31)⋅927
Step 4.1.2.4.3
Multiply 32 by -8.
3488+632√31+(-1504-256√31)⋅3-20(8+2√31)⋅927
Step 4.1.2.4.4
Apply the distributive property.
3488+632√31-1504⋅3-256√31⋅3-20(8+2√31)⋅927
Step 4.1.2.4.5
Multiply -1504 by 3.
3488+632√31-4512-256√31⋅3-20(8+2√31)⋅927
Step 4.1.2.4.6
Multiply 3 by -256.
3488+632√31-4512-768√31-20(8+2√31)⋅927
Step 4.1.2.4.7
Apply the distributive property.
3488+632√31-4512-768√31+(-20⋅8-20(2√31))⋅927
Step 4.1.2.4.8
Multiply -20 by 8.
3488+632√31-4512-768√31+(-160-20(2√31))⋅927
Step 4.1.2.4.9
Multiply 2 by -20.
3488+632√31-4512-768√31+(-160-40√31)⋅927
Step 4.1.2.4.10
Apply the distributive property.
3488+632√31-4512-768√31-160⋅9-40√31⋅927
Step 4.1.2.4.11
Multiply -160 by 9.
3488+632√31-4512-768√31-1440-40√31⋅927
Step 4.1.2.4.12
Multiply 9 by -40.
3488+632√31-4512-768√31-1440-360√3127
3488+632√31-4512-768√31-1440-360√3127
Step 4.1.2.5
Simplify terms.
Step 4.1.2.5.1
Subtract 4512 from 3488.
-1024+632√31-768√31-1440-360√3127
Step 4.1.2.5.2
Subtract 1440 from -1024.
-2464+632√31-768√31-360√3127
Step 4.1.2.5.3
Subtract 768√31 from 632√31.
-2464-136√31-360√3127
Step 4.1.2.5.4
Subtract 360√31 from -136√31.
-2464-496√3127
Step 4.1.2.5.5
Rewrite -2464 as -1(2464).
-1(2464)-496√3127
Step 4.1.2.5.6
Factor -1 out of -496√31.
-1(2464)-(496√31)27
Step 4.1.2.5.7
Factor -1 out of -1(2464)-(496√31).
-1(2464+496√31)27
Step 4.1.2.5.8
Move the negative in front of the fraction.
-2464+496√3127
-2464+496√3127
-2464+496√3127
-2464+496√3127
Step 4.2
Evaluate at x=8-2√313.
Step 4.2.1
Substitute 8-2√313 for x.
(8-2√313)3-8(8-2√313)2-208-2√313
Step 4.2.2
Simplify.
Step 4.2.2.1
Simplify each term.
Step 4.2.2.1.1
Apply the product rule to 8-2√313.
(8-2√31)333-8(8-2√313)2-208-2√313
Step 4.2.2.1.2
Raise 3 to the power of 3.
(8-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.3
Use the Binomial Theorem.
83+3⋅82(-2√31)+3⋅8(-2√31)2+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4
Simplify each term.
Step 4.2.2.1.4.1
Raise 8 to the power of 3.
512+3⋅82(-2√31)+3⋅8(-2√31)2+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.2
Raise 8 to the power of 2.
512+3⋅64(-2√31)+3⋅8(-2√31)2+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.3
Multiply 3 by 64.
512+192(-2√31)+3⋅8(-2√31)2+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.4
Multiply -2 by 192.
512-384√31+3⋅8(-2√31)2+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.5
Multiply 3 by 8.
512-384√31+24(-2√31)2+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.6
Apply the product rule to -2√31.
512-384√31+24((-2)2√312)+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.7
Raise -2 to the power of 2.
512-384√31+24(4√312)+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.8
Rewrite √312 as 31.
Step 4.2.2.1.4.8.1
Use n√ax=axn to rewrite √31 as 3112.
512-384√31+24(4(3112)2)+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.8.2
Apply the power rule and multiply exponents, (am)n=amn.
512-384√31+24(4⋅3112⋅2)+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.8.3
Combine 12 and 2.
512-384√31+24(4⋅3122)+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.8.4
Cancel the common factor of 2.
Step 4.2.2.1.4.8.4.1
Cancel the common factor.
512-384√31+24(4⋅3122)+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.8.4.2
Rewrite the expression.
512-384√31+24(4⋅311)+(-2√31)327-8(8-2√313)2-208-2√313
512-384√31+24(4⋅311)+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.8.5
Evaluate the exponent.
512-384√31+24(4⋅31)+(-2√31)327-8(8-2√313)2-208-2√313
512-384√31+24(4⋅31)+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.9
Multiply 24(4⋅31).
Step 4.2.2.1.4.9.1
Multiply 4 by 31.
512-384√31+24⋅124+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.9.2
Multiply 24 by 124.
512-384√31+2976+(-2√31)327-8(8-2√313)2-208-2√313
512-384√31+2976+(-2√31)327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.10
Apply the product rule to -2√31.
512-384√31+2976+(-2)3√31327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.11
Raise -2 to the power of 3.
512-384√31+2976-8√31327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.12
Rewrite √313 as √313.
512-384√31+2976-8√31327-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.13
Raise 31 to the power of 3.
512-384√31+2976-8√2979127-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.14
Rewrite 29791 as 312⋅31.
Step 4.2.2.1.4.14.1
Factor 961 out of 29791.
512-384√31+2976-8√961(31)27-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.14.2
Rewrite 961 as 312.
512-384√31+2976-8√312⋅3127-8(8-2√313)2-208-2√313
512-384√31+2976-8√312⋅3127-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.15
Pull terms out from under the radical.
512-384√31+2976-8(31√31)27-8(8-2√313)2-208-2√313
Step 4.2.2.1.4.16
Multiply 31 by -8.
512-384√31+2976-248√3127-8(8-2√313)2-208-2√313
512-384√31+2976-248√3127-8(8-2√313)2-208-2√313
Step 4.2.2.1.5
Add 512 and 2976.
3488-384√31-248√3127-8(8-2√313)2-208-2√313
Step 4.2.2.1.6
Subtract 248√31 from -384√31.
3488-632√3127-8(8-2√313)2-208-2√313
Step 4.2.2.1.7
Apply the product rule to 8-2√313.
3488-632√3127-8(8-2√31)232-208-2√313
Step 4.2.2.1.8
Raise 3 to the power of 2.
3488-632√3127-8(8-2√31)29-208-2√313
Step 4.2.2.1.9
Rewrite (8-2√31)2 as (8-2√31)(8-2√31).
3488-632√3127-8(8-2√31)(8-2√31)9-208-2√313
Step 4.2.2.1.10
Expand (8-2√31)(8-2√31) using the FOIL Method.
Step 4.2.2.1.10.1
Apply the distributive property.
3488-632√3127-88(8-2√31)-2√31(8-2√31)9-208-2√313
Step 4.2.2.1.10.2
Apply the distributive property.
3488-632√3127-88⋅8+8(-2√31)-2√31(8-2√31)9-208-2√313
Step 4.2.2.1.10.3
Apply the distributive property.
3488-632√3127-88⋅8+8(-2√31)-2√31⋅8-2√31(-2√31)9-208-2√313
3488-632√3127-88⋅8+8(-2√31)-2√31⋅8-2√31(-2√31)9-208-2√313
Step 4.2.2.1.11
Simplify and combine like terms.
Step 4.2.2.1.11.1
Simplify each term.
Step 4.2.2.1.11.1.1
Multiply 8 by 8.
3488-632√3127-864+8(-2√31)-2√31⋅8-2√31(-2√31)9-208-2√313
Step 4.2.2.1.11.1.2
Multiply -2 by 8.
3488-632√3127-864-16√31-2√31⋅8-2√31(-2√31)9-208-2√313
Step 4.2.2.1.11.1.3
Multiply 8 by -2.
3488-632√3127-864-16√31-16√31-2√31(-2√31)9-208-2√313
Step 4.2.2.1.11.1.4
Multiply -2√31(-2√31).
Step 4.2.2.1.11.1.4.1
Multiply -2 by -2.
3488-632√3127-864-16√31-16√31+4√31√319-208-2√313
Step 4.2.2.1.11.1.4.2
Raise √31 to the power of 1.
3488-632√3127-864-16√31-16√31+4(√311√31)9-208-2√313
Step 4.2.2.1.11.1.4.3
Raise √31 to the power of 1.
3488-632√3127-864-16√31-16√31+4(√311√311)9-208-2√313
Step 4.2.2.1.11.1.4.4
Use the power rule aman=am+n to combine exponents.
3488-632√3127-864-16√31-16√31+4√311+19-208-2√313
Step 4.2.2.1.11.1.4.5
Add 1 and 1.
3488-632√3127-864-16√31-16√31+4√3129-208-2√313
3488-632√3127-864-16√31-16√31+4√3129-208-2√313
Step 4.2.2.1.11.1.5
Rewrite √312 as 31.
Step 4.2.2.1.11.1.5.1
Use n√ax=axn to rewrite √31 as 3112.
3488-632√3127-864-16√31-16√31+4(3112)29-208-2√313
Step 4.2.2.1.11.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
3488-632√3127-864-16√31-16√31+4⋅3112⋅29-208-2√313
Step 4.2.2.1.11.1.5.3
Combine 12 and 2.
3488-632√3127-864-16√31-16√31+4⋅31229-208-2√313
Step 4.2.2.1.11.1.5.4
Cancel the common factor of 2.
Step 4.2.2.1.11.1.5.4.1
Cancel the common factor.
3488-632√3127-864-16√31-16√31+4⋅31229-208-2√313
Step 4.2.2.1.11.1.5.4.2
Rewrite the expression.
3488-632√3127-864-16√31-16√31+4⋅3119-208-2√313
3488-632√3127-864-16√31-16√31+4⋅3119-208-2√313
Step 4.2.2.1.11.1.5.5
Evaluate the exponent.
3488-632√3127-864-16√31-16√31+4⋅319-208-2√313
3488-632√3127-864-16√31-16√31+4⋅319-208-2√313
Step 4.2.2.1.11.1.6
Multiply 4 by 31.
3488-632√3127-864-16√31-16√31+1249-208-2√313
3488-632√3127-864-16√31-16√31+1249-208-2√313
Step 4.2.2.1.11.2
Add 64 and 124.
3488-632√3127-8188-16√31-16√319-208-2√313
Step 4.2.2.1.11.3
Subtract 16√31 from -16√31.
3488-632√3127-8188-32√319-208-2√313
3488-632√3127-8188-32√319-208-2√313
Step 4.2.2.1.12
Combine -8 and 188-32√319.
3488-632√3127+-8(188-32√31)9-208-2√313
Step 4.2.2.1.13
Move the negative in front of the fraction.
3488-632√3127-(8)(188-32√31)9-208-2√313
Step 4.2.2.1.14
Combine -20 and 8-2√313.
3488-632√3127-8(188-32√31)9+-20(8-2√31)3
Step 4.2.2.1.15
Move the negative in front of the fraction.
3488-632√3127-8(188-32√31)9-20(8-2√31)3
3488-632√3127-8(188-32√31)9-20(8-2√31)3
Step 4.2.2.2
Find the common denominator.
Step 4.2.2.2.1
Multiply 8(188-32√31)9 by 33.
3488-632√3127-(8(188-32√31)9⋅33)-20(8-2√31)3
Step 4.2.2.2.2
Multiply 8(188-32√31)9 by 33.
3488-632√3127-8(188-32√31)⋅39⋅3-20(8-2√31)3
Step 4.2.2.2.3
Multiply 20(8-2√31)3 by 99.
3488-632√3127-8(188-32√31)⋅39⋅3-(20(8-2√31)3⋅99)
Step 4.2.2.2.4
Multiply 20(8-2√31)3 by 99.
3488-632√3127-8(188-32√31)⋅39⋅3-20(8-2√31)⋅93⋅9
Step 4.2.2.2.5
Reorder the factors of 9⋅3.
3488-632√3127-8(188-32√31)⋅33⋅9-20(8-2√31)⋅93⋅9
Step 4.2.2.2.6
Multiply 3 by 9.
3488-632√3127-8(188-32√31)⋅327-20(8-2√31)⋅93⋅9
Step 4.2.2.2.7
Multiply 3 by 9.
3488-632√3127-8(188-32√31)⋅327-20(8-2√31)⋅927
3488-632√3127-8(188-32√31)⋅327-20(8-2√31)⋅927
Step 4.2.2.3
Combine the numerators over the common denominator.
3488-632√31-8(188-32√31)⋅3-20(8-2√31)⋅927
Step 4.2.2.4
Simplify each term.
Step 4.2.2.4.1
Apply the distributive property.
3488-632√31+(-8⋅188-8(-32√31))⋅3-20(8-2√31)⋅927
Step 4.2.2.4.2
Multiply -8 by 188.
3488-632√31+(-1504-8(-32√31))⋅3-20(8-2√31)⋅927
Step 4.2.2.4.3
Multiply -32 by -8.
3488-632√31+(-1504+256√31)⋅3-20(8-2√31)⋅927
Step 4.2.2.4.4
Apply the distributive property.
3488-632√31-1504⋅3+256√31⋅3-20(8-2√31)⋅927
Step 4.2.2.4.5
Multiply -1504 by 3.
3488-632√31-4512+256√31⋅3-20(8-2√31)⋅927
Step 4.2.2.4.6
Multiply 3 by 256.
3488-632√31-4512+768√31-20(8-2√31)⋅927
Step 4.2.2.4.7
Apply the distributive property.
3488-632√31-4512+768√31+(-20⋅8-20(-2√31))⋅927
Step 4.2.2.4.8
Multiply -20 by 8.
3488-632√31-4512+768√31+(-160-20(-2√31))⋅927
Step 4.2.2.4.9
Multiply -2 by -20.
3488-632√31-4512+768√31+(-160+40√31)⋅927
Step 4.2.2.4.10
Apply the distributive property.
3488-632√31-4512+768√31-160⋅9+40√31⋅927
Step 4.2.2.4.11
Multiply -160 by 9.
3488-632√31-4512+768√31-1440+40√31⋅927
Step 4.2.2.4.12
Multiply 9 by 40.
3488-632√31-4512+768√31-1440+360√3127
3488-632√31-4512+768√31-1440+360√3127
Step 4.2.2.5
Simplify terms.
Step 4.2.2.5.1
Subtract 4512 from 3488.
-1024-632√31+768√31-1440+360√3127
Step 4.2.2.5.2
Subtract 1440 from -1024.
-2464-632√31+768√31+360√3127
Step 4.2.2.5.3
Add -632√31 and 768√31.
-2464+136√31+360√3127
Step 4.2.2.5.4
Add 136√31 and 360√31.
-2464+496√3127
Step 4.2.2.5.5
Rewrite -2464 as -1(2464).
-1(2464)+496√3127
Step 4.2.2.5.6
Factor -1 out of 496√31.
-1(2464)-(-496√31)27
Step 4.2.2.5.7
Factor -1 out of -1(2464)-(-496√31).
-1(2464-496√31)27
Step 4.2.2.5.8
Move the negative in front of the fraction.
-2464-496√3127
-2464-496√3127
-2464-496√3127
-2464-496√3127
Step 4.3
List all of the points.
(8+2√313,-2464+496√3127),(8-2√313,-2464-496√3127)
(8+2√313,-2464+496√3127),(8-2√313,-2464-496√3127)
Step 5