Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Differentiate.
Step 1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2
Evaluate .
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Multiply by .
Step 1.1.3
Evaluate .
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Use the quadratic formula to find the solutions.
Step 2.3
Substitute the values , , and into the quadratic formula and solve for .
Step 2.4
Simplify.
Step 2.4.1
Simplify the numerator.
Step 2.4.1.1
Raise to the power of .
Step 2.4.1.2
Multiply .
Step 2.4.1.2.1
Multiply by .
Step 2.4.1.2.2
Multiply by .
Step 2.4.1.3
Add and .
Step 2.4.1.4
Rewrite as .
Step 2.4.1.4.1
Factor out of .
Step 2.4.1.4.2
Rewrite as .
Step 2.4.1.5
Pull terms out from under the radical.
Step 2.4.2
Multiply by .
Step 2.4.3
Simplify .
Step 2.5
Simplify the expression to solve for the portion of the .
Step 2.5.1
Simplify the numerator.
Step 2.5.1.1
Raise to the power of .
Step 2.5.1.2
Multiply .
Step 2.5.1.2.1
Multiply by .
Step 2.5.1.2.2
Multiply by .
Step 2.5.1.3
Add and .
Step 2.5.1.4
Rewrite as .
Step 2.5.1.4.1
Factor out of .
Step 2.5.1.4.2
Rewrite as .
Step 2.5.1.5
Pull terms out from under the radical.
Step 2.5.2
Multiply by .
Step 2.5.3
Simplify .
Step 2.5.4
Change the to .
Step 2.6
Simplify the expression to solve for the portion of the .
Step 2.6.1
Simplify the numerator.
Step 2.6.1.1
Raise to the power of .
Step 2.6.1.2
Multiply .
Step 2.6.1.2.1
Multiply by .
Step 2.6.1.2.2
Multiply by .
Step 2.6.1.3
Add and .
Step 2.6.1.4
Rewrite as .
Step 2.6.1.4.1
Factor out of .
Step 2.6.1.4.2
Rewrite as .
Step 2.6.1.5
Pull terms out from under the radical.
Step 2.6.2
Multiply by .
Step 2.6.3
Simplify .
Step 2.6.4
Change the to .
Step 2.7
The final answer is the combination of both solutions.
Step 3
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Step 4.1
Evaluate at .
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Step 4.1.2.1
Simplify each term.
Step 4.1.2.1.1
Apply the product rule to .
Step 4.1.2.1.2
Raise to the power of .
Step 4.1.2.1.3
Use the Binomial Theorem.
Step 4.1.2.1.4
Simplify each term.
Step 4.1.2.1.4.1
Raise to the power of .
Step 4.1.2.1.4.2
Raise to the power of .
Step 4.1.2.1.4.3
Multiply by .
Step 4.1.2.1.4.4
Multiply by .
Step 4.1.2.1.4.5
Multiply by .
Step 4.1.2.1.4.6
Apply the product rule to .
Step 4.1.2.1.4.7
Raise to the power of .
Step 4.1.2.1.4.8
Rewrite as .
Step 4.1.2.1.4.8.1
Use to rewrite as .
Step 4.1.2.1.4.8.2
Apply the power rule and multiply exponents, .
Step 4.1.2.1.4.8.3
Combine and .
Step 4.1.2.1.4.8.4
Cancel the common factor of .
Step 4.1.2.1.4.8.4.1
Cancel the common factor.
Step 4.1.2.1.4.8.4.2
Rewrite the expression.
Step 4.1.2.1.4.8.5
Evaluate the exponent.
Step 4.1.2.1.4.9
Multiply .
Step 4.1.2.1.4.9.1
Multiply by .
Step 4.1.2.1.4.9.2
Multiply by .
Step 4.1.2.1.4.10
Apply the product rule to .
Step 4.1.2.1.4.11
Raise to the power of .
Step 4.1.2.1.4.12
Rewrite as .
Step 4.1.2.1.4.13
Raise to the power of .
Step 4.1.2.1.4.14
Rewrite as .
Step 4.1.2.1.4.14.1
Factor out of .
Step 4.1.2.1.4.14.2
Rewrite as .
Step 4.1.2.1.4.15
Pull terms out from under the radical.
Step 4.1.2.1.4.16
Multiply by .
Step 4.1.2.1.5
Add and .
Step 4.1.2.1.6
Add and .
Step 4.1.2.1.7
Apply the product rule to .
Step 4.1.2.1.8
Raise to the power of .
Step 4.1.2.1.9
Rewrite as .
Step 4.1.2.1.10
Expand using the FOIL Method.
Step 4.1.2.1.10.1
Apply the distributive property.
Step 4.1.2.1.10.2
Apply the distributive property.
Step 4.1.2.1.10.3
Apply the distributive property.
Step 4.1.2.1.11
Simplify and combine like terms.
Step 4.1.2.1.11.1
Simplify each term.
Step 4.1.2.1.11.1.1
Multiply by .
Step 4.1.2.1.11.1.2
Multiply by .
Step 4.1.2.1.11.1.3
Multiply by .
Step 4.1.2.1.11.1.4
Multiply .
Step 4.1.2.1.11.1.4.1
Multiply by .
Step 4.1.2.1.11.1.4.2
Raise to the power of .
Step 4.1.2.1.11.1.4.3
Raise to the power of .
Step 4.1.2.1.11.1.4.4
Use the power rule to combine exponents.
Step 4.1.2.1.11.1.4.5
Add and .
Step 4.1.2.1.11.1.5
Rewrite as .
Step 4.1.2.1.11.1.5.1
Use to rewrite as .
Step 4.1.2.1.11.1.5.2
Apply the power rule and multiply exponents, .
Step 4.1.2.1.11.1.5.3
Combine and .
Step 4.1.2.1.11.1.5.4
Cancel the common factor of .
Step 4.1.2.1.11.1.5.4.1
Cancel the common factor.
Step 4.1.2.1.11.1.5.4.2
Rewrite the expression.
Step 4.1.2.1.11.1.5.5
Evaluate the exponent.
Step 4.1.2.1.11.1.6
Multiply by .
Step 4.1.2.1.11.2
Add and .
Step 4.1.2.1.11.3
Add and .
Step 4.1.2.1.12
Combine and .
Step 4.1.2.1.13
Move the negative in front of the fraction.
Step 4.1.2.1.14
Combine and .
Step 4.1.2.1.15
Move the negative in front of the fraction.
Step 4.1.2.2
Find the common denominator.
Step 4.1.2.2.1
Multiply by .
Step 4.1.2.2.2
Multiply by .
Step 4.1.2.2.3
Multiply by .
Step 4.1.2.2.4
Multiply by .
Step 4.1.2.2.5
Reorder the factors of .
Step 4.1.2.2.6
Multiply by .
Step 4.1.2.2.7
Multiply by .
Step 4.1.2.3
Combine the numerators over the common denominator.
Step 4.1.2.4
Simplify each term.
Step 4.1.2.4.1
Apply the distributive property.
Step 4.1.2.4.2
Multiply by .
Step 4.1.2.4.3
Multiply by .
Step 4.1.2.4.4
Apply the distributive property.
Step 4.1.2.4.5
Multiply by .
Step 4.1.2.4.6
Multiply by .
Step 4.1.2.4.7
Apply the distributive property.
Step 4.1.2.4.8
Multiply by .
Step 4.1.2.4.9
Multiply by .
Step 4.1.2.4.10
Apply the distributive property.
Step 4.1.2.4.11
Multiply by .
Step 4.1.2.4.12
Multiply by .
Step 4.1.2.5
Simplify terms.
Step 4.1.2.5.1
Subtract from .
Step 4.1.2.5.2
Subtract from .
Step 4.1.2.5.3
Subtract from .
Step 4.1.2.5.4
Subtract from .
Step 4.1.2.5.5
Rewrite as .
Step 4.1.2.5.6
Factor out of .
Step 4.1.2.5.7
Factor out of .
Step 4.1.2.5.8
Move the negative in front of the fraction.
Step 4.2
Evaluate at .
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Step 4.2.2.1
Simplify each term.
Step 4.2.2.1.1
Apply the product rule to .
Step 4.2.2.1.2
Raise to the power of .
Step 4.2.2.1.3
Use the Binomial Theorem.
Step 4.2.2.1.4
Simplify each term.
Step 4.2.2.1.4.1
Raise to the power of .
Step 4.2.2.1.4.2
Raise to the power of .
Step 4.2.2.1.4.3
Multiply by .
Step 4.2.2.1.4.4
Multiply by .
Step 4.2.2.1.4.5
Multiply by .
Step 4.2.2.1.4.6
Apply the product rule to .
Step 4.2.2.1.4.7
Raise to the power of .
Step 4.2.2.1.4.8
Rewrite as .
Step 4.2.2.1.4.8.1
Use to rewrite as .
Step 4.2.2.1.4.8.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.4.8.3
Combine and .
Step 4.2.2.1.4.8.4
Cancel the common factor of .
Step 4.2.2.1.4.8.4.1
Cancel the common factor.
Step 4.2.2.1.4.8.4.2
Rewrite the expression.
Step 4.2.2.1.4.8.5
Evaluate the exponent.
Step 4.2.2.1.4.9
Multiply .
Step 4.2.2.1.4.9.1
Multiply by .
Step 4.2.2.1.4.9.2
Multiply by .
Step 4.2.2.1.4.10
Apply the product rule to .
Step 4.2.2.1.4.11
Raise to the power of .
Step 4.2.2.1.4.12
Rewrite as .
Step 4.2.2.1.4.13
Raise to the power of .
Step 4.2.2.1.4.14
Rewrite as .
Step 4.2.2.1.4.14.1
Factor out of .
Step 4.2.2.1.4.14.2
Rewrite as .
Step 4.2.2.1.4.15
Pull terms out from under the radical.
Step 4.2.2.1.4.16
Multiply by .
Step 4.2.2.1.5
Add and .
Step 4.2.2.1.6
Subtract from .
Step 4.2.2.1.7
Apply the product rule to .
Step 4.2.2.1.8
Raise to the power of .
Step 4.2.2.1.9
Rewrite as .
Step 4.2.2.1.10
Expand using the FOIL Method.
Step 4.2.2.1.10.1
Apply the distributive property.
Step 4.2.2.1.10.2
Apply the distributive property.
Step 4.2.2.1.10.3
Apply the distributive property.
Step 4.2.2.1.11
Simplify and combine like terms.
Step 4.2.2.1.11.1
Simplify each term.
Step 4.2.2.1.11.1.1
Multiply by .
Step 4.2.2.1.11.1.2
Multiply by .
Step 4.2.2.1.11.1.3
Multiply by .
Step 4.2.2.1.11.1.4
Multiply .
Step 4.2.2.1.11.1.4.1
Multiply by .
Step 4.2.2.1.11.1.4.2
Raise to the power of .
Step 4.2.2.1.11.1.4.3
Raise to the power of .
Step 4.2.2.1.11.1.4.4
Use the power rule to combine exponents.
Step 4.2.2.1.11.1.4.5
Add and .
Step 4.2.2.1.11.1.5
Rewrite as .
Step 4.2.2.1.11.1.5.1
Use to rewrite as .
Step 4.2.2.1.11.1.5.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.11.1.5.3
Combine and .
Step 4.2.2.1.11.1.5.4
Cancel the common factor of .
Step 4.2.2.1.11.1.5.4.1
Cancel the common factor.
Step 4.2.2.1.11.1.5.4.2
Rewrite the expression.
Step 4.2.2.1.11.1.5.5
Evaluate the exponent.
Step 4.2.2.1.11.1.6
Multiply by .
Step 4.2.2.1.11.2
Add and .
Step 4.2.2.1.11.3
Subtract from .
Step 4.2.2.1.12
Combine and .
Step 4.2.2.1.13
Move the negative in front of the fraction.
Step 4.2.2.1.14
Combine and .
Step 4.2.2.1.15
Move the negative in front of the fraction.
Step 4.2.2.2
Find the common denominator.
Step 4.2.2.2.1
Multiply by .
Step 4.2.2.2.2
Multiply by .
Step 4.2.2.2.3
Multiply by .
Step 4.2.2.2.4
Multiply by .
Step 4.2.2.2.5
Reorder the factors of .
Step 4.2.2.2.6
Multiply by .
Step 4.2.2.2.7
Multiply by .
Step 4.2.2.3
Combine the numerators over the common denominator.
Step 4.2.2.4
Simplify each term.
Step 4.2.2.4.1
Apply the distributive property.
Step 4.2.2.4.2
Multiply by .
Step 4.2.2.4.3
Multiply by .
Step 4.2.2.4.4
Apply the distributive property.
Step 4.2.2.4.5
Multiply by .
Step 4.2.2.4.6
Multiply by .
Step 4.2.2.4.7
Apply the distributive property.
Step 4.2.2.4.8
Multiply by .
Step 4.2.2.4.9
Multiply by .
Step 4.2.2.4.10
Apply the distributive property.
Step 4.2.2.4.11
Multiply by .
Step 4.2.2.4.12
Multiply by .
Step 4.2.2.5
Simplify terms.
Step 4.2.2.5.1
Subtract from .
Step 4.2.2.5.2
Subtract from .
Step 4.2.2.5.3
Add and .
Step 4.2.2.5.4
Add and .
Step 4.2.2.5.5
Rewrite as .
Step 4.2.2.5.6
Factor out of .
Step 4.2.2.5.7
Factor out of .
Step 4.2.2.5.8
Move the negative in front of the fraction.
Step 4.3
List all of the points.
Step 5