Calculus Examples

Find the Critical Points f(x)=x^3-8x^2-20x
f(x)=x3-8x2-20xf(x)=x38x220x
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Differentiate.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of x3-8x2-20x with respect to x is ddx[x3]+ddx[-8x2]+ddx[-20x].
f(x)=ddx(x3)+ddx(-8x2)+ddx(-20x)
Step 1.1.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
f(x)=3x2+ddx(-8x2)+ddx(-20x)
f(x)=3x2+ddx(-8x2)+ddx(-20x)
Step 1.1.2
Evaluate ddx[-8x2].
Tap for more steps...
Step 1.1.2.1
Since -8 is constant with respect to x, the derivative of -8x2 with respect to x is -8ddx[x2].
f(x)=3x2-8ddxx2+ddx(-20x)
Step 1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
f(x)=3x2-8(2x)+ddx(-20x)
Step 1.1.2.3
Multiply 2 by -8.
f(x)=3x2-16x+ddx(-20x)
f(x)=3x2-16x+ddx(-20x)
Step 1.1.3
Evaluate ddx[-20x].
Tap for more steps...
Step 1.1.3.1
Since -20 is constant with respect to x, the derivative of -20x with respect to x is -20ddx[x].
f(x)=3x2-16x-20ddxx
Step 1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
f(x)=3x2-16x-201
Step 1.1.3.3
Multiply -20 by 1.
f(x)=3x2-16x-20
f(x)=3x2-16x-20
f(x)=3x2-16x-20
Step 1.2
The first derivative of f(x) with respect to x is 3x2-16x-20.
3x2-16x-20
3x2-16x-20
Step 2
Set the first derivative equal to 0 then solve the equation 3x2-16x-20=0.
Tap for more steps...
Step 2.1
Set the first derivative equal to 0.
3x2-16x-20=0
Step 2.2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 2.3
Substitute the values a=3, b=-16, and c=-20 into the quadratic formula and solve for x.
16±(-16)2-4(3-20)23
Step 2.4
Simplify.
Tap for more steps...
Step 2.4.1
Simplify the numerator.
Tap for more steps...
Step 2.4.1.1
Raise -16 to the power of 2.
x=16±256-43-2023
Step 2.4.1.2
Multiply -43-20.
Tap for more steps...
Step 2.4.1.2.1
Multiply -4 by 3.
x=16±256-12-2023
Step 2.4.1.2.2
Multiply -12 by -20.
x=16±256+24023
x=16±256+24023
Step 2.4.1.3
Add 256 and 240.
x=16±49623
Step 2.4.1.4
Rewrite 496 as 4231.
Tap for more steps...
Step 2.4.1.4.1
Factor 16 out of 496.
x=16±16(31)23
Step 2.4.1.4.2
Rewrite 16 as 42.
x=16±423123
x=16±423123
Step 2.4.1.5
Pull terms out from under the radical.
x=16±43123
x=16±43123
Step 2.4.2
Multiply 2 by 3.
x=16±4316
Step 2.4.3
Simplify 16±4316.
x=8±2313
x=8±2313
Step 2.5
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 2.5.1
Simplify the numerator.
Tap for more steps...
Step 2.5.1.1
Raise -16 to the power of 2.
x=16±256-43-2023
Step 2.5.1.2
Multiply -43-20.
Tap for more steps...
Step 2.5.1.2.1
Multiply -4 by 3.
x=16±256-12-2023
Step 2.5.1.2.2
Multiply -12 by -20.
x=16±256+24023
x=16±256+24023
Step 2.5.1.3
Add 256 and 240.
x=16±49623
Step 2.5.1.4
Rewrite 496 as 4231.
Tap for more steps...
Step 2.5.1.4.1
Factor 16 out of 496.
x=16±16(31)23
Step 2.5.1.4.2
Rewrite 16 as 42.
x=16±423123
x=16±423123
Step 2.5.1.5
Pull terms out from under the radical.
x=16±43123
x=16±43123
Step 2.5.2
Multiply 2 by 3.
x=16±4316
Step 2.5.3
Simplify 16±4316.
x=8±2313
Step 2.5.4
Change the ± to +.
x=8+2313
x=8+2313
Step 2.6
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 2.6.1
Simplify the numerator.
Tap for more steps...
Step 2.6.1.1
Raise -16 to the power of 2.
x=16±256-43-2023
Step 2.6.1.2
Multiply -43-20.
Tap for more steps...
Step 2.6.1.2.1
Multiply -4 by 3.
x=16±256-12-2023
Step 2.6.1.2.2
Multiply -12 by -20.
x=16±256+24023
x=16±256+24023
Step 2.6.1.3
Add 256 and 240.
x=16±49623
Step 2.6.1.4
Rewrite 496 as 4231.
Tap for more steps...
Step 2.6.1.4.1
Factor 16 out of 496.
x=16±16(31)23
Step 2.6.1.4.2
Rewrite 16 as 42.
x=16±423123
x=16±423123
Step 2.6.1.5
Pull terms out from under the radical.
x=16±43123
x=16±43123
Step 2.6.2
Multiply 2 by 3.
x=16±4316
Step 2.6.3
Simplify 16±4316.
x=8±2313
Step 2.6.4
Change the ± to -.
x=8-2313
x=8-2313
Step 2.7
The final answer is the combination of both solutions.
x=8+2313,8-2313
x=8+2313,8-2313
Step 3
Find the values where the derivative is undefined.
Tap for more steps...
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Evaluate x3-8x2-20x at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 4.1
Evaluate at x=8+2313.
Tap for more steps...
Step 4.1.1
Substitute 8+2313 for x.
(8+2313)3-8(8+2313)2-208+2313
Step 4.1.2
Simplify.
Tap for more steps...
Step 4.1.2.1
Simplify each term.
Tap for more steps...
Step 4.1.2.1.1
Apply the product rule to 8+2313.
(8+231)333-8(8+2313)2-208+2313
Step 4.1.2.1.2
Raise 3 to the power of 3.
(8+231)327-8(8+2313)2-208+2313
Step 4.1.2.1.3
Use the Binomial Theorem.
83+382(231)+38(231)2+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4
Simplify each term.
Tap for more steps...
Step 4.1.2.1.4.1
Raise 8 to the power of 3.
512+382(231)+38(231)2+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.2
Raise 8 to the power of 2.
512+364(231)+38(231)2+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.3
Multiply 3 by 64.
512+192(231)+38(231)2+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.4
Multiply 2 by 192.
512+38431+38(231)2+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.5
Multiply 3 by 8.
512+38431+24(231)2+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.6
Apply the product rule to 231.
512+38431+24(22312)+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.7
Raise 2 to the power of 2.
512+38431+24(4312)+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.8
Rewrite 312 as 31.
Tap for more steps...
Step 4.1.2.1.4.8.1
Use nax=axn to rewrite 31 as 3112.
512+38431+24(4(3112)2)+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.8.2
Apply the power rule and multiply exponents, (am)n=amn.
512+38431+24(431122)+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.8.3
Combine 12 and 2.
512+38431+24(43122)+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.8.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.1.2.1.4.8.4.1
Cancel the common factor.
512+38431+24(43122)+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.8.4.2
Rewrite the expression.
512+38431+24(4311)+(231)327-8(8+2313)2-208+2313
512+38431+24(4311)+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.8.5
Evaluate the exponent.
512+38431+24(431)+(231)327-8(8+2313)2-208+2313
512+38431+24(431)+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.9
Multiply 24(431).
Tap for more steps...
Step 4.1.2.1.4.9.1
Multiply 4 by 31.
512+38431+24124+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.9.2
Multiply 24 by 124.
512+38431+2976+(231)327-8(8+2313)2-208+2313
512+38431+2976+(231)327-8(8+2313)2-208+2313
Step 4.1.2.1.4.10
Apply the product rule to 231.
512+38431+2976+2331327-8(8+2313)2-208+2313
Step 4.1.2.1.4.11
Raise 2 to the power of 3.
512+38431+2976+831327-8(8+2313)2-208+2313
Step 4.1.2.1.4.12
Rewrite 313 as 313.
512+38431+2976+831327-8(8+2313)2-208+2313
Step 4.1.2.1.4.13
Raise 31 to the power of 3.
512+38431+2976+82979127-8(8+2313)2-208+2313
Step 4.1.2.1.4.14
Rewrite 29791 as 31231.
Tap for more steps...
Step 4.1.2.1.4.14.1
Factor 961 out of 29791.
512+38431+2976+8961(31)27-8(8+2313)2-208+2313
Step 4.1.2.1.4.14.2
Rewrite 961 as 312.
512+38431+2976+83123127-8(8+2313)2-208+2313
512+38431+2976+83123127-8(8+2313)2-208+2313
Step 4.1.2.1.4.15
Pull terms out from under the radical.
512+38431+2976+8(3131)27-8(8+2313)2-208+2313
Step 4.1.2.1.4.16
Multiply 31 by 8.
512+38431+2976+2483127-8(8+2313)2-208+2313
512+38431+2976+2483127-8(8+2313)2-208+2313
Step 4.1.2.1.5
Add 512 and 2976.
3488+38431+2483127-8(8+2313)2-208+2313
Step 4.1.2.1.6
Add 38431 and 24831.
3488+6323127-8(8+2313)2-208+2313
Step 4.1.2.1.7
Apply the product rule to 8+2313.
3488+6323127-8(8+231)232-208+2313
Step 4.1.2.1.8
Raise 3 to the power of 2.
3488+6323127-8(8+231)29-208+2313
Step 4.1.2.1.9
Rewrite (8+231)2 as (8+231)(8+231).
3488+6323127-8(8+231)(8+231)9-208+2313
Step 4.1.2.1.10
Expand (8+231)(8+231) using the FOIL Method.
Tap for more steps...
Step 4.1.2.1.10.1
Apply the distributive property.
3488+6323127-88(8+231)+231(8+231)9-208+2313
Step 4.1.2.1.10.2
Apply the distributive property.
3488+6323127-888+8(231)+231(8+231)9-208+2313
Step 4.1.2.1.10.3
Apply the distributive property.
3488+6323127-888+8(231)+2318+231(231)9-208+2313
3488+6323127-888+8(231)+2318+231(231)9-208+2313
Step 4.1.2.1.11
Simplify and combine like terms.
Tap for more steps...
Step 4.1.2.1.11.1
Simplify each term.
Tap for more steps...
Step 4.1.2.1.11.1.1
Multiply 8 by 8.
3488+6323127-864+8(231)+2318+231(231)9-208+2313
Step 4.1.2.1.11.1.2
Multiply 2 by 8.
3488+6323127-864+1631+2318+231(231)9-208+2313
Step 4.1.2.1.11.1.3
Multiply 8 by 2.
3488+6323127-864+1631+1631+231(231)9-208+2313
Step 4.1.2.1.11.1.4
Multiply 231(231).
Tap for more steps...
Step 4.1.2.1.11.1.4.1
Multiply 2 by 2.
3488+6323127-864+1631+1631+431319-208+2313
Step 4.1.2.1.11.1.4.2
Raise 31 to the power of 1.
3488+6323127-864+1631+1631+4(31131)9-208+2313
Step 4.1.2.1.11.1.4.3
Raise 31 to the power of 1.
3488+6323127-864+1631+1631+4(311311)9-208+2313
Step 4.1.2.1.11.1.4.4
Use the power rule aman=am+n to combine exponents.
3488+6323127-864+1631+1631+4311+19-208+2313
Step 4.1.2.1.11.1.4.5
Add 1 and 1.
3488+6323127-864+1631+1631+43129-208+2313
3488+6323127-864+1631+1631+43129-208+2313
Step 4.1.2.1.11.1.5
Rewrite 312 as 31.
Tap for more steps...
Step 4.1.2.1.11.1.5.1
Use nax=axn to rewrite 31 as 3112.
3488+6323127-864+1631+1631+4(3112)29-208+2313
Step 4.1.2.1.11.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
3488+6323127-864+1631+1631+4311229-208+2313
Step 4.1.2.1.11.1.5.3
Combine 12 and 2.
3488+6323127-864+1631+1631+431229-208+2313
Step 4.1.2.1.11.1.5.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.1.2.1.11.1.5.4.1
Cancel the common factor.
3488+6323127-864+1631+1631+431229-208+2313
Step 4.1.2.1.11.1.5.4.2
Rewrite the expression.
3488+6323127-864+1631+1631+43119-208+2313
3488+6323127-864+1631+1631+43119-208+2313
Step 4.1.2.1.11.1.5.5
Evaluate the exponent.
3488+6323127-864+1631+1631+4319-208+2313
3488+6323127-864+1631+1631+4319-208+2313
Step 4.1.2.1.11.1.6
Multiply 4 by 31.
3488+6323127-864+1631+1631+1249-208+2313
3488+6323127-864+1631+1631+1249-208+2313
Step 4.1.2.1.11.2
Add 64 and 124.
3488+6323127-8188+1631+16319-208+2313
Step 4.1.2.1.11.3
Add 1631 and 1631.
3488+6323127-8188+32319-208+2313
3488+6323127-8188+32319-208+2313
Step 4.1.2.1.12
Combine -8 and 188+32319.
3488+6323127+-8(188+3231)9-208+2313
Step 4.1.2.1.13
Move the negative in front of the fraction.
3488+6323127-(8)(188+3231)9-208+2313
Step 4.1.2.1.14
Combine -20 and 8+2313.
3488+6323127-8(188+3231)9+-20(8+231)3
Step 4.1.2.1.15
Move the negative in front of the fraction.
3488+6323127-8(188+3231)9-20(8+231)3
3488+6323127-8(188+3231)9-20(8+231)3
Step 4.1.2.2
Find the common denominator.
Tap for more steps...
Step 4.1.2.2.1
Multiply 8(188+3231)9 by 33.
3488+6323127-(8(188+3231)933)-20(8+231)3
Step 4.1.2.2.2
Multiply 8(188+3231)9 by 33.
3488+6323127-8(188+3231)393-20(8+231)3
Step 4.1.2.2.3
Multiply 20(8+231)3 by 99.
3488+6323127-8(188+3231)393-(20(8+231)399)
Step 4.1.2.2.4
Multiply 20(8+231)3 by 99.
3488+6323127-8(188+3231)393-20(8+231)939
Step 4.1.2.2.5
Reorder the factors of 93.
3488+6323127-8(188+3231)339-20(8+231)939
Step 4.1.2.2.6
Multiply 3 by 9.
3488+6323127-8(188+3231)327-20(8+231)939
Step 4.1.2.2.7
Multiply 3 by 9.
3488+6323127-8(188+3231)327-20(8+231)927
3488+6323127-8(188+3231)327-20(8+231)927
Step 4.1.2.3
Combine the numerators over the common denominator.
3488+63231-8(188+3231)3-20(8+231)927
Step 4.1.2.4
Simplify each term.
Tap for more steps...
Step 4.1.2.4.1
Apply the distributive property.
3488+63231+(-8188-8(3231))3-20(8+231)927
Step 4.1.2.4.2
Multiply -8 by 188.
3488+63231+(-1504-8(3231))3-20(8+231)927
Step 4.1.2.4.3
Multiply 32 by -8.
3488+63231+(-1504-25631)3-20(8+231)927
Step 4.1.2.4.4
Apply the distributive property.
3488+63231-15043-256313-20(8+231)927
Step 4.1.2.4.5
Multiply -1504 by 3.
3488+63231-4512-256313-20(8+231)927
Step 4.1.2.4.6
Multiply 3 by -256.
3488+63231-4512-76831-20(8+231)927
Step 4.1.2.4.7
Apply the distributive property.
3488+63231-4512-76831+(-208-20(231))927
Step 4.1.2.4.8
Multiply -20 by 8.
3488+63231-4512-76831+(-160-20(231))927
Step 4.1.2.4.9
Multiply 2 by -20.
3488+63231-4512-76831+(-160-4031)927
Step 4.1.2.4.10
Apply the distributive property.
3488+63231-4512-76831-1609-4031927
Step 4.1.2.4.11
Multiply -160 by 9.
3488+63231-4512-76831-1440-4031927
Step 4.1.2.4.12
Multiply 9 by -40.
3488+63231-4512-76831-1440-3603127
3488+63231-4512-76831-1440-3603127
Step 4.1.2.5
Simplify terms.
Tap for more steps...
Step 4.1.2.5.1
Subtract 4512 from 3488.
-1024+63231-76831-1440-3603127
Step 4.1.2.5.2
Subtract 1440 from -1024.
-2464+63231-76831-3603127
Step 4.1.2.5.3
Subtract 76831 from 63231.
-2464-13631-3603127
Step 4.1.2.5.4
Subtract 36031 from -13631.
-2464-4963127
Step 4.1.2.5.5
Rewrite -2464 as -1(2464).
-1(2464)-4963127
Step 4.1.2.5.6
Factor -1 out of -49631.
-1(2464)-(49631)27
Step 4.1.2.5.7
Factor -1 out of -1(2464)-(49631).
-1(2464+49631)27
Step 4.1.2.5.8
Move the negative in front of the fraction.
-2464+4963127
-2464+4963127
-2464+4963127
-2464+4963127
Step 4.2
Evaluate at x=8-2313.
Tap for more steps...
Step 4.2.1
Substitute 8-2313 for x.
(8-2313)3-8(8-2313)2-208-2313
Step 4.2.2
Simplify.
Tap for more steps...
Step 4.2.2.1
Simplify each term.
Tap for more steps...
Step 4.2.2.1.1
Apply the product rule to 8-2313.
(8-231)333-8(8-2313)2-208-2313
Step 4.2.2.1.2
Raise 3 to the power of 3.
(8-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.3
Use the Binomial Theorem.
83+382(-231)+38(-231)2+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4
Simplify each term.
Tap for more steps...
Step 4.2.2.1.4.1
Raise 8 to the power of 3.
512+382(-231)+38(-231)2+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.2
Raise 8 to the power of 2.
512+364(-231)+38(-231)2+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.3
Multiply 3 by 64.
512+192(-231)+38(-231)2+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.4
Multiply -2 by 192.
512-38431+38(-231)2+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.5
Multiply 3 by 8.
512-38431+24(-231)2+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.6
Apply the product rule to -231.
512-38431+24((-2)2312)+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.7
Raise -2 to the power of 2.
512-38431+24(4312)+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.8
Rewrite 312 as 31.
Tap for more steps...
Step 4.2.2.1.4.8.1
Use nax=axn to rewrite 31 as 3112.
512-38431+24(4(3112)2)+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.8.2
Apply the power rule and multiply exponents, (am)n=amn.
512-38431+24(431122)+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.8.3
Combine 12 and 2.
512-38431+24(43122)+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.8.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.2.1.4.8.4.1
Cancel the common factor.
512-38431+24(43122)+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.8.4.2
Rewrite the expression.
512-38431+24(4311)+(-231)327-8(8-2313)2-208-2313
512-38431+24(4311)+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.8.5
Evaluate the exponent.
512-38431+24(431)+(-231)327-8(8-2313)2-208-2313
512-38431+24(431)+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.9
Multiply 24(431).
Tap for more steps...
Step 4.2.2.1.4.9.1
Multiply 4 by 31.
512-38431+24124+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.9.2
Multiply 24 by 124.
512-38431+2976+(-231)327-8(8-2313)2-208-2313
512-38431+2976+(-231)327-8(8-2313)2-208-2313
Step 4.2.2.1.4.10
Apply the product rule to -231.
512-38431+2976+(-2)331327-8(8-2313)2-208-2313
Step 4.2.2.1.4.11
Raise -2 to the power of 3.
512-38431+2976-831327-8(8-2313)2-208-2313
Step 4.2.2.1.4.12
Rewrite 313 as 313.
512-38431+2976-831327-8(8-2313)2-208-2313
Step 4.2.2.1.4.13
Raise 31 to the power of 3.
512-38431+2976-82979127-8(8-2313)2-208-2313
Step 4.2.2.1.4.14
Rewrite 29791 as 31231.
Tap for more steps...
Step 4.2.2.1.4.14.1
Factor 961 out of 29791.
512-38431+2976-8961(31)27-8(8-2313)2-208-2313
Step 4.2.2.1.4.14.2
Rewrite 961 as 312.
512-38431+2976-83123127-8(8-2313)2-208-2313
512-38431+2976-83123127-8(8-2313)2-208-2313
Step 4.2.2.1.4.15
Pull terms out from under the radical.
512-38431+2976-8(3131)27-8(8-2313)2-208-2313
Step 4.2.2.1.4.16
Multiply 31 by -8.
512-38431+2976-2483127-8(8-2313)2-208-2313
512-38431+2976-2483127-8(8-2313)2-208-2313
Step 4.2.2.1.5
Add 512 and 2976.
3488-38431-2483127-8(8-2313)2-208-2313
Step 4.2.2.1.6
Subtract 24831 from -38431.
3488-6323127-8(8-2313)2-208-2313
Step 4.2.2.1.7
Apply the product rule to 8-2313.
3488-6323127-8(8-231)232-208-2313
Step 4.2.2.1.8
Raise 3 to the power of 2.
3488-6323127-8(8-231)29-208-2313
Step 4.2.2.1.9
Rewrite (8-231)2 as (8-231)(8-231).
3488-6323127-8(8-231)(8-231)9-208-2313
Step 4.2.2.1.10
Expand (8-231)(8-231) using the FOIL Method.
Tap for more steps...
Step 4.2.2.1.10.1
Apply the distributive property.
3488-6323127-88(8-231)-231(8-231)9-208-2313
Step 4.2.2.1.10.2
Apply the distributive property.
3488-6323127-888+8(-231)-231(8-231)9-208-2313
Step 4.2.2.1.10.3
Apply the distributive property.
3488-6323127-888+8(-231)-2318-231(-231)9-208-2313
3488-6323127-888+8(-231)-2318-231(-231)9-208-2313
Step 4.2.2.1.11
Simplify and combine like terms.
Tap for more steps...
Step 4.2.2.1.11.1
Simplify each term.
Tap for more steps...
Step 4.2.2.1.11.1.1
Multiply 8 by 8.
3488-6323127-864+8(-231)-2318-231(-231)9-208-2313
Step 4.2.2.1.11.1.2
Multiply -2 by 8.
3488-6323127-864-1631-2318-231(-231)9-208-2313
Step 4.2.2.1.11.1.3
Multiply 8 by -2.
3488-6323127-864-1631-1631-231(-231)9-208-2313
Step 4.2.2.1.11.1.4
Multiply -231(-231).
Tap for more steps...
Step 4.2.2.1.11.1.4.1
Multiply -2 by -2.
3488-6323127-864-1631-1631+431319-208-2313
Step 4.2.2.1.11.1.4.2
Raise 31 to the power of 1.
3488-6323127-864-1631-1631+4(31131)9-208-2313
Step 4.2.2.1.11.1.4.3
Raise 31 to the power of 1.
3488-6323127-864-1631-1631+4(311311)9-208-2313
Step 4.2.2.1.11.1.4.4
Use the power rule aman=am+n to combine exponents.
3488-6323127-864-1631-1631+4311+19-208-2313
Step 4.2.2.1.11.1.4.5
Add 1 and 1.
3488-6323127-864-1631-1631+43129-208-2313
3488-6323127-864-1631-1631+43129-208-2313
Step 4.2.2.1.11.1.5
Rewrite 312 as 31.
Tap for more steps...
Step 4.2.2.1.11.1.5.1
Use nax=axn to rewrite 31 as 3112.
3488-6323127-864-1631-1631+4(3112)29-208-2313
Step 4.2.2.1.11.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
3488-6323127-864-1631-1631+4311229-208-2313
Step 4.2.2.1.11.1.5.3
Combine 12 and 2.
3488-6323127-864-1631-1631+431229-208-2313
Step 4.2.2.1.11.1.5.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.2.1.11.1.5.4.1
Cancel the common factor.
3488-6323127-864-1631-1631+431229-208-2313
Step 4.2.2.1.11.1.5.4.2
Rewrite the expression.
3488-6323127-864-1631-1631+43119-208-2313
3488-6323127-864-1631-1631+43119-208-2313
Step 4.2.2.1.11.1.5.5
Evaluate the exponent.
3488-6323127-864-1631-1631+4319-208-2313
3488-6323127-864-1631-1631+4319-208-2313
Step 4.2.2.1.11.1.6
Multiply 4 by 31.
3488-6323127-864-1631-1631+1249-208-2313
3488-6323127-864-1631-1631+1249-208-2313
Step 4.2.2.1.11.2
Add 64 and 124.
3488-6323127-8188-1631-16319-208-2313
Step 4.2.2.1.11.3
Subtract 1631 from -1631.
3488-6323127-8188-32319-208-2313
3488-6323127-8188-32319-208-2313
Step 4.2.2.1.12
Combine -8 and 188-32319.
3488-6323127+-8(188-3231)9-208-2313
Step 4.2.2.1.13
Move the negative in front of the fraction.
3488-6323127-(8)(188-3231)9-208-2313
Step 4.2.2.1.14
Combine -20 and 8-2313.
3488-6323127-8(188-3231)9+-20(8-231)3
Step 4.2.2.1.15
Move the negative in front of the fraction.
3488-6323127-8(188-3231)9-20(8-231)3
3488-6323127-8(188-3231)9-20(8-231)3
Step 4.2.2.2
Find the common denominator.
Tap for more steps...
Step 4.2.2.2.1
Multiply 8(188-3231)9 by 33.
3488-6323127-(8(188-3231)933)-20(8-231)3
Step 4.2.2.2.2
Multiply 8(188-3231)9 by 33.
3488-6323127-8(188-3231)393-20(8-231)3
Step 4.2.2.2.3
Multiply 20(8-231)3 by 99.
3488-6323127-8(188-3231)393-(20(8-231)399)
Step 4.2.2.2.4
Multiply 20(8-231)3 by 99.
3488-6323127-8(188-3231)393-20(8-231)939
Step 4.2.2.2.5
Reorder the factors of 93.
3488-6323127-8(188-3231)339-20(8-231)939
Step 4.2.2.2.6
Multiply 3 by 9.
3488-6323127-8(188-3231)327-20(8-231)939
Step 4.2.2.2.7
Multiply 3 by 9.
3488-6323127-8(188-3231)327-20(8-231)927
3488-6323127-8(188-3231)327-20(8-231)927
Step 4.2.2.3
Combine the numerators over the common denominator.
3488-63231-8(188-3231)3-20(8-231)927
Step 4.2.2.4
Simplify each term.
Tap for more steps...
Step 4.2.2.4.1
Apply the distributive property.
3488-63231+(-8188-8(-3231))3-20(8-231)927
Step 4.2.2.4.2
Multiply -8 by 188.
3488-63231+(-1504-8(-3231))3-20(8-231)927
Step 4.2.2.4.3
Multiply -32 by -8.
3488-63231+(-1504+25631)3-20(8-231)927
Step 4.2.2.4.4
Apply the distributive property.
3488-63231-15043+256313-20(8-231)927
Step 4.2.2.4.5
Multiply -1504 by 3.
3488-63231-4512+256313-20(8-231)927
Step 4.2.2.4.6
Multiply 3 by 256.
3488-63231-4512+76831-20(8-231)927
Step 4.2.2.4.7
Apply the distributive property.
3488-63231-4512+76831+(-208-20(-231))927
Step 4.2.2.4.8
Multiply -20 by 8.
3488-63231-4512+76831+(-160-20(-231))927
Step 4.2.2.4.9
Multiply -2 by -20.
3488-63231-4512+76831+(-160+4031)927
Step 4.2.2.4.10
Apply the distributive property.
3488-63231-4512+76831-1609+4031927
Step 4.2.2.4.11
Multiply -160 by 9.
3488-63231-4512+76831-1440+4031927
Step 4.2.2.4.12
Multiply 9 by 40.
3488-63231-4512+76831-1440+3603127
3488-63231-4512+76831-1440+3603127
Step 4.2.2.5
Simplify terms.
Tap for more steps...
Step 4.2.2.5.1
Subtract 4512 from 3488.
-1024-63231+76831-1440+3603127
Step 4.2.2.5.2
Subtract 1440 from -1024.
-2464-63231+76831+3603127
Step 4.2.2.5.3
Add -63231 and 76831.
-2464+13631+3603127
Step 4.2.2.5.4
Add 13631 and 36031.
-2464+4963127
Step 4.2.2.5.5
Rewrite -2464 as -1(2464).
-1(2464)+4963127
Step 4.2.2.5.6
Factor -1 out of 49631.
-1(2464)-(-49631)27
Step 4.2.2.5.7
Factor -1 out of -1(2464)-(-49631).
-1(2464-49631)27
Step 4.2.2.5.8
Move the negative in front of the fraction.
-2464-4963127
-2464-4963127
-2464-4963127
-2464-4963127
Step 4.3
List all of the points.
(8+2313,-2464+4963127),(8-2313,-2464-4963127)
(8+2313,-2464+4963127),(8-2313,-2464-4963127)
Step 5
 [x2  12  π  xdx ]