Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
Step 2.1
Differentiate.
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Rewrite as .
Step 2.2.3
Differentiate using the Power Rule which states that is where .
Step 2.2.4
Multiply by .
Step 2.3
Rewrite the expression using the negative exponent rule .
Step 2.4
Simplify.
Step 2.4.1
Combine terms.
Step 2.4.1.1
Combine and .
Step 2.4.1.2
Move the negative in front of the fraction.
Step 2.4.2
Reorder terms.
Step 3
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Rewrite as .
Step 3.2.3
Differentiate using the chain rule, which states that is where and .
Step 3.2.3.1
To apply the Chain Rule, set as .
Step 3.2.3.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3.3
Replace all occurrences of with .
Step 3.2.4
Differentiate using the Power Rule which states that is where .
Step 3.2.5
Multiply the exponents in .
Step 3.2.5.1
Apply the power rule and multiply exponents, .
Step 3.2.5.2
Multiply by .
Step 3.2.6
Multiply by .
Step 3.2.7
Raise to the power of .
Step 3.2.8
Use the power rule to combine exponents.
Step 3.2.9
Subtract from .
Step 3.2.10
Multiply by .
Step 3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.4
Simplify.
Step 3.4.1
Rewrite the expression using the negative exponent rule .
Step 3.4.2
Combine terms.
Step 3.4.2.1
Combine and .
Step 3.4.2.2
Add and .
Step 4
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 5
Step 5.1
Find the first derivative.
Step 5.1.1
Differentiate.
Step 5.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 5.1.1.2
Differentiate using the Power Rule which states that is where .
Step 5.1.2
Evaluate .
Step 5.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.2.2
Rewrite as .
Step 5.1.2.3
Differentiate using the Power Rule which states that is where .
Step 5.1.2.4
Multiply by .
Step 5.1.3
Rewrite the expression using the negative exponent rule .
Step 5.1.4
Simplify.
Step 5.1.4.1
Combine terms.
Step 5.1.4.1.1
Combine and .
Step 5.1.4.1.2
Move the negative in front of the fraction.
Step 5.1.4.2
Reorder terms.
Step 5.2
The first derivative of with respect to is .
Step 6
Step 6.1
Set the first derivative equal to .
Step 6.2
Subtract from both sides of the equation.
Step 6.3
Find the LCD of the terms in the equation.
Step 6.3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 6.3.2
The LCM of one and any expression is the expression.
Step 6.4
Multiply each term in by to eliminate the fractions.
Step 6.4.1
Multiply each term in by .
Step 6.4.2
Simplify the left side.
Step 6.4.2.1
Cancel the common factor of .
Step 6.4.2.1.1
Move the leading negative in into the numerator.
Step 6.4.2.1.2
Cancel the common factor.
Step 6.4.2.1.3
Rewrite the expression.
Step 6.5
Solve the equation.
Step 6.5.1
Rewrite the equation as .
Step 6.5.2
Divide each term in by and simplify.
Step 6.5.2.1
Divide each term in by .
Step 6.5.2.2
Simplify the left side.
Step 6.5.2.2.1
Dividing two negative values results in a positive value.
Step 6.5.2.2.2
Divide by .
Step 6.5.2.3
Simplify the right side.
Step 6.5.2.3.1
Divide by .
Step 6.5.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 6.5.4
Simplify .
Step 6.5.4.1
Rewrite as .
Step 6.5.4.2
Pull terms out from under the radical, assuming positive real numbers.
Step 6.5.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 6.5.5.1
First, use the positive value of the to find the first solution.
Step 6.5.5.2
Next, use the negative value of the to find the second solution.
Step 6.5.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 7
Step 7.1
Set the denominator in equal to to find where the expression is undefined.
Step 7.2
Solve for .
Step 7.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 7.2.2
Simplify .
Step 7.2.2.1
Rewrite as .
Step 7.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 7.2.2.3
Plus or minus is .
Step 8
Critical points to evaluate.
Step 9
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 10
Step 10.1
Raise to the power of .
Step 10.2
Cancel the common factor of and .
Step 10.2.1
Factor out of .
Step 10.2.2
Cancel the common factors.
Step 10.2.2.1
Factor out of .
Step 10.2.2.2
Cancel the common factor.
Step 10.2.2.3
Rewrite the expression.
Step 11
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 12
Step 12.1
Replace the variable with in the expression.
Step 12.2
Simplify the result.
Step 12.2.1
Divide by .
Step 12.2.2
Add and .
Step 12.2.3
The final answer is .
Step 13
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 14
Step 14.1
Raise to the power of .
Step 14.2
Cancel the common factor of and .
Step 14.2.1
Factor out of .
Step 14.2.2
Cancel the common factors.
Step 14.2.2.1
Factor out of .
Step 14.2.2.2
Cancel the common factor.
Step 14.2.2.3
Rewrite the expression.
Step 14.3
Move the negative in front of the fraction.
Step 15
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 16
Step 16.1
Replace the variable with in the expression.
Step 16.2
Simplify the result.
Step 16.2.1
Divide by .
Step 16.2.2
Subtract from .
Step 16.2.3
The final answer is .
Step 17
These are the local extrema for .
is a local minima
is a local maxima
Step 18