Calculus Examples

Find the Critical Points f(x)=x^5-5x^3-20x-2
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Differentiate.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2
Evaluate .
Tap for more steps...
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Multiply by .
Step 1.1.3
Evaluate .
Tap for more steps...
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4.2
Add and .
Step 1.2
The first derivative of with respect to is .
Step 2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the first derivative equal to .
Step 2.2
Substitute into the equation. This will make the quadratic formula easy to use.
Step 2.3
Factor the left side of the equation.
Tap for more steps...
Step 2.3.1
Factor out of .
Tap for more steps...
Step 2.3.1.1
Factor out of .
Step 2.3.1.2
Factor out of .
Step 2.3.1.3
Factor out of .
Step 2.3.1.4
Factor out of .
Step 2.3.1.5
Factor out of .
Step 2.3.2
Factor.
Tap for more steps...
Step 2.3.2.1
Factor using the AC method.
Tap for more steps...
Step 2.3.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 2.3.2.1.2
Write the factored form using these integers.
Step 2.3.2.2
Remove unnecessary parentheses.
Step 2.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.5
Set equal to and solve for .
Tap for more steps...
Step 2.5.1
Set equal to .
Step 2.5.2
Add to both sides of the equation.
Step 2.6
Set equal to and solve for .
Tap for more steps...
Step 2.6.1
Set equal to .
Step 2.6.2
Subtract from both sides of the equation.
Step 2.7
The final solution is all the values that make true.
Step 2.8
Substitute the real value of back into the solved equation.
Step 2.9
Solve the first equation for .
Step 2.10
Solve the equation for .
Tap for more steps...
Step 2.10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.10.2
Simplify .
Tap for more steps...
Step 2.10.2.1
Rewrite as .
Step 2.10.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 2.10.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 2.10.3.1
First, use the positive value of the to find the first solution.
Step 2.10.3.2
Next, use the negative value of the to find the second solution.
Step 2.10.3.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.11
Solve the second equation for .
Step 2.12
Solve the equation for .
Tap for more steps...
Step 2.12.1
Remove parentheses.
Step 2.12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.12.3
Rewrite as .
Step 2.12.4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 2.12.4.1
First, use the positive value of the to find the first solution.
Step 2.12.4.2
Next, use the negative value of the to find the second solution.
Step 2.12.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.13
The solution to is .
Step 3
Find the values where the derivative is undefined.
Tap for more steps...
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Evaluate at each value where the derivative is or undefined.
Tap for more steps...
Step 4.1
Evaluate at .
Tap for more steps...
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Tap for more steps...
Step 4.1.2.1
Simplify each term.
Tap for more steps...
Step 4.1.2.1.1
Raise to the power of .
Step 4.1.2.1.2
Raise to the power of .
Step 4.1.2.1.3
Multiply by .
Step 4.1.2.1.4
Multiply by .
Step 4.1.2.2
Simplify by subtracting numbers.
Tap for more steps...
Step 4.1.2.2.1
Subtract from .
Step 4.1.2.2.2
Subtract from .
Step 4.1.2.2.3
Subtract from .
Step 4.2
Evaluate at .
Tap for more steps...
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Tap for more steps...
Step 4.2.2.1
Simplify each term.
Tap for more steps...
Step 4.2.2.1.1
Raise to the power of .
Step 4.2.2.1.2
Raise to the power of .
Step 4.2.2.1.3
Multiply by .
Step 4.2.2.1.4
Multiply by .
Step 4.2.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 4.2.2.2.1
Add and .
Step 4.2.2.2.2
Add and .
Step 4.2.2.2.3
Subtract from .
Step 4.3
List all of the points.
Step 5